Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Quantum computing has some truly startling applications

December 4th, 2007

Quantum computing has some truly startling applications

Abstract:
Quantum computers and quantum information technology remain in a pioneering stage, says Vishal Sahni, author of ‘Quantum Computing' ( http://www.tatamcgrawhill.com ). "Currently, there are obstacles to be surmounted, before we have the knowledge to thrust quantum computers up to their rightful position as the fastest computational machines in existence."

Quantum systems possess immense computational power due to the startling property of quantum bits (or qubits) that they can exist in a superposition of two or more states at once, thereby opening up immense possibilities like quantum parallelism, quantum entanglement, teleportation, superdense coding and so on, he explains, during the course of a recent e-mail interview with Business Line.

"The scale of quantum physical phenomena is so vast, that even a super computer built on von Neumann style computing cannot realistically model quantum physics at the atomic and sub-atomic level. On the other hand, quantum computers, which mimic the quantum physics themselves, are capable of vast parallelism and could theoretically simulate such phenomena."

Source:
hindu.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Quantum Computing

Photon-pair source with pump rejection filter fabricated on single CMOS chip: New integrated source provides critical component for chip-based quantum photonic systems October 15th, 2021

Fujitsu and Osaka University deepen collaborative research and development for fault-tolerant quantum computers October 1st, 2021

Two-dimensional hybrid metal halide device allows control of terahertz emissions October 1st, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Announcements

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Molecular Sciences Software Institute receives $15 million grant from National Science Foundation October 15th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Intelligent optical chip to improve telecommunications: An INRS team uses autonomous learning approaches for optical waveform generators to boost optical signal processing functionalities for current and future telecom applications October 15th, 2021

Using quantum Parrondo’s random walks for encryption: Asst Prof Kang Hao Cheong and his research team from SUTD have set out to apply concepts from quantum Parrondo’s paradox in search of a working protocol for semiclassical encryption October 15th, 2021

Cellular environments shape molecular architecture: Researchers glean a more complete picture of a structure called the nuclear pore complex by studying it directly inside cells October 15th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Artificial Intelligence

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Argonne researchers use AI to optimize a popular material coating technique in real time June 25th, 2021

Graphene key for novel hardware security May 10th, 2021

With new optical device, engineers can fine tune the color of light April 23rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project