Home > News > High-sensitivity, rapid-response nanotechnology NOx sensor
August 27th, 2007
High-sensitivity, rapid-response nanotechnology NOx sensor
Abstract:
Koichi Hamamoto,a post-doctoral Research Scientist in the Functional Assembly Technology Group at the Advanced Manufacturing Research Institute of the National Institute of Advanced Industrial Science and Technology (AIST) has developed a high-sensitive nitrogen oxide (NOx) sensor with a rapid response.
Strenuous efforts are being made to develop clean-burn technologies for gasoline-fueled vehicles to comply with societal demands for reducing CO2 emissions and better fuel consumption. However, although clean-burn engines produce less CO2 emissions, they produce more NOx emissions than conventional engines. Existing three-way catalysts cannot be used to eliminate NOx emissions under lean combustion because of the high concentration of oxygen in the exhaust gases. Instead of the three-way catalyst, a practical clean-burn engine uses a NOc storage-reduction catalyst system. A NOc trap material in this catalyst absorbs NOx during lean-burn condition. When the catalyst becomes saturated with NOx, a rich spike (excessive fuel supply) is generated in the engine, and this excessive amounts of fuel reduces and purifies the absorbed NOx.
Source:
nanowerk.com
| Related News Press |
Sensors
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Discoveries
From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Automotive/Transportation
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||