Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Antibody Targets Nanotubes to Tumors

Abstract:
Researchers at Memorial Sloan-Kettering Cancer Center have created biocompatible single-walled carbon nanotubes that can target lymphomas and deliver both imaging and therapeutic molecules to these tumors. Reporting its work in the Journal of Nuclear Medicine, the research team describes the methods it used to create these targeted, multifunctional nanotubes and its initial in vitro and in vivo test results. David Scheinberg, M.D., Ph.D., led the team of investigators.

Antibody Targets Nanotubes to Tumors

Bethesda , MD | Posted on July 23rd, 2007

Starting with water-soluble carbon nanotubes, which recent work has shown are nontoxic to human cells, Scheinberg's group created a construct that included a tumor-targeting antibody, a fluorescent imaging probe, and a radioactive therapeutic agent. Each nanotube, which contained approximately six antibody molecules and 114 radioactive atoms, proved to be stable in human plasma for at least 96 hours and was able to bind to targeted tumor cells. Most importantly, according to the researchers, the chemical linkages binding the radioactive element indium-111 was completely stable in human plasma for the entire 4-day experiment.

Tests using a mouse model of human lymphoma showed that this nanotube construct successfully targeted tumors while avoiding healthy cells. The researchers note that the antibody alone, that is, one not attached to a carbon nanotube, bound better to tumor cells than did the nanotube construct; they believe this difference is a result of not yet optimizing the methods they used to attach the antibodies to the carbon nanotubes.

This work, which was supported by the National Cancer Institute, is detailed in the paper "Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes." An investigator from Cornell University also participated in this study. An abstract of this paper is available through PubMed.

####

About National Cancer Institute
To help meet the goal of eliminating suffering and death due to cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract

Related News Press

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project