Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Physicists Tailor Magnetic Pairings In Nanoscale Semiconductors

March 14th, 2007

Physicists Tailor Magnetic Pairings In Nanoscale Semiconductors

Abstract:
Electrons love to zip around metals such as copper, especially if the metal is cooled to temperatures near absolute zero. But if they encounter a magnetic atom (say, iron) during their travels, the electrons will try to "screen," or cancel out, the magnetic atom's spin alignment by pairing with it. This pairing modifies the flow of electrons in the metal, in a phenomenon called the Kondo effect.

But what if there weren't just one set of mobile electrons zipping around the metal? What if there were two, and both sets fought equally hard to couple with the magnetic impurity atom? Torn between two lovers, the magnetic atom couldn't decide with which set to partner. The competition would go unresolved, and the atom would join neither, instead existing in a remarkable state of frustrated independence known as the two-channel Kondo state.

Source:
testandmeasurement.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chip Technology

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

Beyond silicon: Electronics at the scale of a single molecule January 30th, 2026

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Discoveries

From sensors to smart systems: the rise of AI-driven photonic noses January 30th, 2026

Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Metasurfaces smooth light to boost magnetic sensing precision January 30th, 2026

COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026

Breathing new life into nanotubes for a cooler planet:Researchers at Skoltech discover a simple, single-step heat treatment that nearly doubles the CO2-trapping power of carbon nanotubes January 30th, 2026

New light-based nanotechnology could enable more precise, less harmful cancer treatment: The approach offers a potential alternative to chemotherapy and radiation by using light and heat to target cancer cells. January 30th, 2026

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project