Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Bucky MESH score big for biomedical applications

Abstract:
The biocompatibility of Carbon nanotube MESH has been demonstrated, and is ready to be engineered into therapeutic delivery systems.

Bucky MESH cover a host of ills for biomedical applications

San Jose, CA | Posted on January 26, 2006

By Nick Massetti

The biocompatibility of Carbon nanotube MESH has been demonstrated, and is ready to be engineered into therapeutic delivery systems. Such marvels promise to impact those stubborn medical conditions like the $150 Billion/year problem of Diabetes. This revelation was among the latest results in the area of biomedical applications of nanotechnology that were presented by Doctor David Loftus at the January monthly seminar of the IEEE San Francisco Bay Area Nanotechnology Council.

Dr. Loftus is a practicing Hematology Oncologist on the adjunct clinical faculty of the Stanford University School of Medicine. In addition, at NASA AMES Research Center he is affiliated with both the Center for Nanotechnology and the Live Sciences Division where he serves as the Medical Director of Hematology Oncology Projects. He is uniquely positioned to see the pieces of the promise coming together for the near term biomedical applications of nanotechnology.

He described how specially engineered CNT mesh, dubbed "Bucky Paper," was introduced into one of the body's most reactive environments without negative consequences. Construction of millimeter sized vehicles from rolls of this nano-engineered bucky paper are underway in order to house biochemicals or live cells that would otherwise be rejected by the body's defenses. Insulin delivery pumps, nerve growth guides, and chemotherapy torpedoes are examples of macro-sized vehicles with macro-sized payloads that bucky paper enables. The porous nature of the mesh allows nutrients to penetrate while shielding its cargo from the likes of antibodies, or a tumor's defenses. Equally possible are biosensors designed to detect specific protein sequences and facilitate rapid diagnosis. Biocompatible Bucky Paper then enables our well known nano-sized Carbon tubes to be conveniently transformed into a macro sized, and therefore useful, medical application tool.

Today, MDs are particularly frustrated over the lengthy diagnostic methodology which starts with a tissue biopsy and then adds lab microscopic analysis toward a later completed diagnosis. Subsequent treatments may include chemotherapy delivered indiscriminately to the entire circulatory system. But diseases like coronary artery disease, diabetes, and many cancers largely affect the body locally and have well defined biochemistries. Locally delivered nanotechnology engineered substances hold the promise of providing in-situ detection and diagnosis which then would be followed by localized treatment.

Pressed to guess at what and when these results will surface, Dr. Loftus volunteered that the "dumbest applications will be first." For example, the mechanical aspects of bucky paper could enable surface applications like wound healing to be realized within five to seven years. Therapeutic delivery may be up to ten years away. By his count there are at least 30 US companies now developing nanotechnology engineered encapsulation schemes. Given that innovation breeds innovation, biocompatible bucky paper may provide the boost needed to shorten the time tables toward the solution of many of today's medical challenges.

####
Contact:
Nick Massetti
nick@NMassettiConsulting.com

Copyright © Nick Massetti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project