Home > News > 'Gadonanotubes' greatly outperform existing MRI contrast agents
August 11th, 2005
'Gadonanotubes' greatly outperform existing MRI contrast agents
Abstract:
Researchers at Rice University, the Baylor College of Medicine, the University of Houston and the Ecole Polytechnique Fédérale de Lausanne in Switzerland have created a new class of magnetic resonance imaging (MRI) contrast agents that are at least 40 times more effective than the best in clinical use.
The new agents -- dubbed gadonanotubes -- use the same highly toxic metal, gadolinium, that is given to more than a quarter of MRI patients today, but the metal atoms are encased inside a hollow tube of pure carbon called a nanotube. Shrouding the toxic metals inside the benign carbon is expected to significantly reduce or eliminate the metal's toxicity.
Source:
eurekalert.org
| Related News Press |
Possible Futures
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings/Nanosheets
Tiny nanosheets, big leap: A new sensor detects ethanol at ultra-low levels January 30th, 2026
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Announcements
Decoding hydrogen‑bond network of electrolyte for cryogenic durable aqueous zinc‑ion batteries January 30th, 2026
COF scaffold membrane with gate‑lane nanostructure for efficient Li+/Mg2+ separation January 30th, 2026
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||