Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A giant step toward tiny functional nanowires

Abstract:
OWL able to produce gaps as small as 2.5 nanometers wide

A giant step toward tiny functional nanowires

Evanston, IL | June 30, 2005

Carving a telephone pole is easy if you have the right tools, say a power saw and some large chisels. And with some much tinier tools you could even carve a design into a paper clip if you wanted to. But shrink your sights down to the nanoscale, to a nanowire that is 1,000 times smaller than the diameter of a paper clip, and you find there are no physical tools to do the job properly.

So a team of Northwestern University scientists turned to chemistry and developed a new method that can routinely and cheaply produce nanowires with gaps as small as five nanometers wide -- a feat that is unattainable using conventional lithographic techniques. The results will be published in the July 1 issue of the journal Science.

Carved gaps are essential to a nanowire's function, and controlling those gaps would allow scientists and engineers to design with precision devices ranging from tiny integrated circuits to gene chips and protein arrays for diagnostics and drug discovery.

"With miniaturization happening across so many fields, our existing tools -- our chisels of a sort -- can't control the shapes and spacing of these small structures," said Chad A. Mirkin, director of Northwestern's Institute for Nanotechnology, who led the research team. "Our method allows us to selectively introduce gaps into the wires. These gaps can be filled with molecules, making them components for building small electronic and photonic devices or chemical and biological sensors."

The development of sophisticated nanoelectronics, said Mirkin, depends on the ability to fabricate and functionalize electrode gaps less than 20 nanometers wide for precise electrical measurements on nanomaterials and even individual molecules. While conventional techniques can't make gaps much smaller than 20 nanometers wide, Mirkin's method, called on-wire lithography, or OWL, has been able to produce gaps as small as 2.5 nanometers wide.

Mirkin and his team made the notched structures by first depositing into a porous template segmented nanowires made of two materials, one that is resistant to wet-chemical etching (gold) and one that is susceptible (nickel). The template is then dissolved, releasing the nanowires. Next, the wires are dispersed on a flat substrate, and a thin layer of glass is deposited onto their exposed faces. They are then suspended in solution, and a selective wet-chemical etching removes the nickel, leaving gold nanowires with well-defined gaps where the nickel used to be. (The glass is used as a bridging material, to hold the nanowire together.)

Using the OWL method, the researchers prepared nanowires with designed gaps of 5, 25, 40, 50, 70, 100, 140 and 210 nanometers wide. (A nanometer is one billionth of a meter or roughly the length of three atoms side by side. A DNA molecule is 2.5 nanometers wide.) In recent days, they have refined the technique to be able to make gaps as small as 2.5 nanometers wide.

"With dip-pen nanolithography, we can then drop into these gaps many different molecules, depending on what function we want the structure to have," said Mirkin, also George B. Rathmann Professor of Chemistry. "This really opens up the possibility of using molecules as components for a variety of nanoscale devices."

In addition to Mirkin, other authors on the Science paper are Lidong Qin (lead author), Sungho Park and Ling Huang of Northwestern University.


####

About Northwestern University:
Northwestern University is a private institution founded in 1851 to serve the Northwest Territory, an area that now includes the states of Ohio, Indiana, Illinois, Michigan, Wisconsin, and part of Minnesota. In 1853 the founders purchased a 379-acre tract of land on the shore of Lake Michigan 12 miles north of Chicago. They established a campus and developed the land near it, naming the surrounding town Evanston in honor of one of the University's founders, John Evans. After completing its first building in 1855, Northwestern began classes that fall with two faculty members and 10 students.

For more information, please visit www.northwestern.edu


Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Sensors

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project