Home > Press > Tiny magnetic particles enable new material to bend, twist, and grab
![]() |
This object is made from a special material called "magnetic shape-memory polymer." It can bend and change shape in response to a magnetic field. CREDIT Allison Carter |
Abstract:
A team of researchers from the Georgia Institute of Technology and The Ohio State University has developed a soft polymer material, called magnetic shape memory polymer, that uses magnetic fields to transform into a variety of shapes. The material could enable a range of new applications from antennas that change frequencies on the fly to gripper arms for delicate or heavy objects.
The material is a mixture of three different ingredients, all with unique characteristics: two types of magnetic particles, one for inductive heat and one with strong magnetic attraction, and shape-memory polymers to help lock various shape changes into place.
"This is the first material that combines the strengths of all of these individual components into a single system capable of rapid and reprogrammable shape changes that are lockable and reversible," said Jerry Qi, a professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech.
The research, which was reported Dec. 9 in the journal Advanced Materials, was sponsored by the National Foundation of Science, the Air Force Office of Scientific Research, and the Department of Energy.
To make the material, the researchers began by distributing particles of neodymium iron boron (NdFeB) and iron oxide into a mixture of shape memory polymers. Once the particles were fully incorporated, the researchers then molded that mixture into various objects designed to evaluate how the material performed in a series of applications.
For example, the team made a gripper claw from a t-shaped mold of the magnetic shape memory polymer mixture. Applying a high-frequency, oscillating magnetic field to the object caused the iron oxide particles to heat up through induction and warm the entire gripper. That temperature rise, in turn, caused the shape memory polymer matrix to soften and become pliable. A second magnetic field was then applied to the gripper, causing its claws to open and close. Once the shape memory polymers cool back down, they remain locked in that position.
The shape-changing process takes only a few seconds from start to finish, and the strength of the material at its locked state allowed the gripper to lift objects up to 1,000 times its own weight.
"We envision this material being useful for situations where a robotic arm would need to lift a very delicate object without damaging it, such as in the food industry or for chemical or biomedical applications," Qi said.
The new material builds on earlier research that outlined actuation mechanisms for soft robotics and active materials and evaluated the limitations in current technologies.
"The degree of freedom is limited in conventional robotics" said Ruike (Renee) Zhao, an assistant professor in the Department of Mechanical and Aerospace Engineering at Ohio State. "With soft materials, that degree of freedom is unlimited."
The researchers also tested other applications, where coil-shaped objects made from the new material expanded and retracted - simulating how an antenna could potentially change frequencies when actuated by the magnetic fields.
"This process requires us to use of magnetic fields only during the actuation phase," Zhao said. "So, once an object has reached its new shape, it can be locked there without constantly consuming energy."
###
This research was supported by The Ohio State University Materials Research Seed Grant Program, funded by the National Science Foundation's Center for Emergent Materials under grant No. DMR-1420451. The project was also supported by the Center for Exploration of Novel Complex Materials, the Institute for Materials Research, the Air Force Office of Scientific Research under grant No. FA9550-19-1-0151, the U.S. Department of Energy under grant No. DE-SC0001304, and by grants from the Haythornthwaite Foundation. The content is the responsibility of the authors and does not necessarily represent the official views of the sponsoring agencies.
####
For more information, please click here
Contacts:
Josh Brown
404-385-0500
@GeorgiaTech
Copyright © Georgia Institute of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Wireless/telecommunications/RF/Antennas/Microwaves
Quantum network nodes with warm atoms June 24th, 2022
Photonic integrated erbium doped amplifiers reach commercial performance: Boosting light power revolutionizes communications and autopilots June 17th, 2022
Nanoscale bowtie antenna under optical and electrical excitations June 3rd, 2022
Dynamic metasurfaces and metadevices empowered by graphene May 6th, 2022
Magnetism/Magnons
‘Nanomagnetic’ computing can provide low-energy AI, researchers show May 6th, 2022
Videos/Movies
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022
OCSiAl receives the green light for Luxembourg graphene nanotube facility project to power the next generation of electric vehicles in Europe March 4th, 2022
Govt.-Legislation/Regulation/Funding/Policy
UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022
Possible Futures
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Materials/Metamaterials
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
New protocol for assessing the safety of nanomaterials July 1st, 2022
Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022
Announcements
Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022
Generating power where seawater and river water meet July 22nd, 2022
First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022
Military
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022
Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes July 8th, 2022
Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022
Solving the solar energy storage problem with rechargeable batteries that can convert and store energy at once June 24th, 2022
Research partnerships
Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022
New technology helps reveal inner workings of human genome June 24th, 2022
Boron nitride nanotube fibers get real: Rice lab creates first heat-tolerant, stable fibers from wet-spinning process June 24th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |