Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny magnetic particles enable new material to bend, twist, and grab

This object is made from a special material called "magnetic shape-memory polymer." It can bend and change shape in response to a magnetic field.
CREDIT
Allison Carter
This object is made from a special material called "magnetic shape-memory polymer." It can bend and change shape in response to a magnetic field. CREDIT Allison Carter

Abstract:
A team of researchers from the Georgia Institute of Technology and The Ohio State University has developed a soft polymer material, called magnetic shape memory polymer, that uses magnetic fields to transform into a variety of shapes. The material could enable a range of new applications from antennas that change frequencies on the fly to gripper arms for delicate or heavy objects.

Tiny magnetic particles enable new material to bend, twist, and grab

Atlanta, GA | Posted on December 13th, 2019

The material is a mixture of three different ingredients, all with unique characteristics: two types of magnetic particles, one for inductive heat and one with strong magnetic attraction, and shape-memory polymers to help lock various shape changes into place.

"This is the first material that combines the strengths of all of these individual components into a single system capable of rapid and reprogrammable shape changes that are lockable and reversible," said Jerry Qi, a professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech.

The research, which was reported Dec. 9 in the journal Advanced Materials, was sponsored by the National Foundation of Science, the Air Force Office of Scientific Research, and the Department of Energy.

To make the material, the researchers began by distributing particles of neodymium iron boron (NdFeB) and iron oxide into a mixture of shape memory polymers. Once the particles were fully incorporated, the researchers then molded that mixture into various objects designed to evaluate how the material performed in a series of applications.

For example, the team made a gripper claw from a t-shaped mold of the magnetic shape memory polymer mixture. Applying a high-frequency, oscillating magnetic field to the object caused the iron oxide particles to heat up through induction and warm the entire gripper. That temperature rise, in turn, caused the shape memory polymer matrix to soften and become pliable. A second magnetic field was then applied to the gripper, causing its claws to open and close. Once the shape memory polymers cool back down, they remain locked in that position.

The shape-changing process takes only a few seconds from start to finish, and the strength of the material at its locked state allowed the gripper to lift objects up to 1,000 times its own weight.

"We envision this material being useful for situations where a robotic arm would need to lift a very delicate object without damaging it, such as in the food industry or for chemical or biomedical applications," Qi said.

The new material builds on earlier research that outlined actuation mechanisms for soft robotics and active materials and evaluated the limitations in current technologies.

"The degree of freedom is limited in conventional robotics" said Ruike (Renee) Zhao, an assistant professor in the Department of Mechanical and Aerospace Engineering at Ohio State. "With soft materials, that degree of freedom is unlimited."

The researchers also tested other applications, where coil-shaped objects made from the new material expanded and retracted - simulating how an antenna could potentially change frequencies when actuated by the magnetic fields.

"This process requires us to use of magnetic fields only during the actuation phase," Zhao said. "So, once an object has reached its new shape, it can be locked there without constantly consuming energy."

###

This research was supported by The Ohio State University Materials Research Seed Grant Program, funded by the National Science Foundation's Center for Emergent Materials under grant No. DMR-1420451. The project was also supported by the Center for Exploration of Novel Complex Materials, the Institute for Materials Research, the Air Force Office of Scientific Research under grant No. FA9550-19-1-0151, the U.S. Department of Energy under grant No. DE-SC0001304, and by grants from the Haythornthwaite Foundation. The content is the responsibility of the authors and does not necessarily represent the official views of the sponsoring agencies.

####

For more information, please click here

Contacts:
Josh Brown

404-385-0500

@GeorgiaTech

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

CITATION: Qiji Ze, Xiao Kuang, Shuai Wu, Janet Wong, S. Macrae Montgomery, Rundong Zhang, Joshua M. Kovitz, Fengyuan Yang, H. Jerry Qi, and Ruike Zhao, "Magnetic Shape Memory Polymers with Integrated Multifunctional Shape Manipulations" (Advanced Materials, 2019):

Related News Press

News and information

The lightest shielding material in the world: Protection against electromagnetic interference July 3rd, 2020

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Wireless/telecommunications/RF/Antennas/Microwaves

Chemistry paves the way for improved electronic materials June 26th, 2020

CEA-Leti Researchers Break Throughput Record for LiFi Communications Using Single GaN Blue Micro-Light-Emitting Diode: Data-Transmission Rate of 7.7 Gbps Positions LiFi as Possible Replacement for WiFi with Further R&D and Industrial Standardization to Ensure Interoperability of June 12th, 2020

Magnetism

Researchers discover new boron-lanthanide nanostructure June 25th, 2020

Videos/Movies

Measuring a tiny quasiparticle is a major step forward for semiconductor technology: Research team publishes latest findings on promising quasiparticles and their interactions June 19th, 2020

Oxford Instruments Asylum Research Jupiter XR Large-Sample AFM Now Includes New Ergo Software Interface for Even Greater Productivity June 18th, 2020

Tiny pump builds polyrotaxanes with precision: Artificial molecular pump gives precise control for materials design June 12th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Charcoal a weapon to fight superoxide-induced disease, injury: Nanomaterials soak up radicals, could aid treatment of COVID-19 July 2nd, 2020

The nature of nuclear forces imprinted in photons June 30th, 2020

Possible Futures

Spintronics: Faster data processing through ultrashort electric pulses July 3rd, 2020

A path to new nanofluidic devices applying spintronics technology: Substantial increase in the energy conversion efficiency of hydrodynamic power generation via spin currents July 3rd, 2020

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Materials/Metamaterials

Cellulose for manufacturing advanced materials: A review of the scientific literature made at the University of the Basque Country (UPV/EHU) highlights the potential of hybrid materials based on cellulose nanocrystals June 26th, 2020

Macroscopic quantum interference in an ultra-pure metal June 26th, 2020

Process for 'two-faced' nanomaterials may aid energy, information tech June 26th, 2020

Researchers discover new boron-lanthanide nanostructure June 25th, 2020

Announcements

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Crystal structure discovered almost 200 years ago could hold key to solar cell revolution July 3rd, 2020

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Carbon-loving materials designed to reduce industrial emissions July 3rd, 2020

Military

A Tremendous Recognitioní Engineer Jonathan Klamkin earns prestigious award from DARPA June 23rd, 2020

Fluorocarbon bonds are no match for light-powered nanocatalyst: Rice U. lab unveils catalyst that can break problematic C-F bonds June 22nd, 2020

Teaching physics to neural networks removes 'chaos blindness' June 19th, 2020

Is teleportation possible? Yes, in the quantum world: Quantum teleportation is an important step in improving quantum computing June 19th, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Towards lasers powerful enough to investigate a new kind of physics: An international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers July 3rd, 2020

Charcoal a weapon to fight superoxide-induced disease, injury: Nanomaterials soak up radicals, could aid treatment of COVID-19 July 2nd, 2020

The nature of nuclear forces imprinted in photons June 30th, 2020

A Tremendous Recognitioní Engineer Jonathan Klamkin earns prestigious award from DARPA June 23rd, 2020

Research partnerships

Cellulose for manufacturing advanced materials: A review of the scientific literature made at the University of the Basque Country (UPV/EHU) highlights the potential of hybrid materials based on cellulose nanocrystals June 26th, 2020

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project