Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts

Graphene, a super tough wonder material, hasn't made it into electronics yet because it doesn't conduct an electric current on its own. Researchers used a laser technique to permanently stress graphene into a structure that allows the flow of electric current.

CREDIT
Purdue University image/Gary Cheng
Graphene, a super tough wonder material, hasn't made it into electronics yet because it doesn't conduct an electric current on its own. Researchers used a laser technique to permanently stress graphene into a structure that allows the flow of electric current. CREDIT Purdue University image/Gary Cheng

Abstract:
ABSTRACT

Asymmetric 3D Elastic-Plastic Strain-Modulated Electron Energy Structure in Monolayer Graphene by Laser Shocking

Maithilee Motlag1, Prashant Kumar1, Kevin Y. Hu1, Shengyu Jin1, Ji Li1, Jiayi Shao1, Xuan Yi1, Yen-Hsiang Lin2, Jenna C. Walrath2, Lei Tong3, Xinyu Huang3, Rachel S. Goldman2, Lei Ye3, and Gary J. Cheng1

1Purdue University, West Lafayette, IN, USA

2University of Michigan, Ann Arbor, MI, USA

3Huazhong University of Science and Technology, Wuhan, China

doi: 10.1002/adma.201900597

Graphene has a great potential to replace silicon in prospective semiconductor industries due to its outstanding electronic and transport properties; nonetheless, its lack of energy bandgap is a substantial limitation for practical applications. To date, straining graphene to break its lattice symmetry is perhaps the most efficient approach toward realizing bandgap tunability in graphene. However, due to the weak lattice deformation induced by uniaxial or in?plane shear strain, most strained graphene studies have yielded bandgaps <1 eV. In this work, a modulated inhomogeneous local asymmetric elastic-plastic straining is reported that utilizes GPa?level laser shocking at a high strain rate (dε/dt) ? 106-107 s?1, with excellent formability, inducing tunable bandgaps in graphene of up to 2.1 eV, as determined by scanning tunneling spectroscopy. High?resolution imaging and Raman spectroscopy reveal strain?induced modifications to the atomic and electronic structure in graphene and first?principles simulations predict the measured bandgap openings. Laser shock modulation of semimetallic graphene to a semiconducting material with controllable bandgap has the potential to benefit the electronic and optoelectronic industries.

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts

West Lafayette, IN | Posted on May 30th, 2019

In 2004, researchers discovered a super thin material that is at least a 100 times stronger than steel and the best known conductor of heat and electricity.

This means that the material, graphene, could bring faster electronics than is possible today with silicon.

But to truly be useful, graphene would need to carry an electric current that switches on and off, like what silicon does in the form of billions of transistors on a computer chip. This switching creates strings of 0s and 1s that a computer uses for processing information.

Purdue University researchers, in collaboration with the University of Michigan and the Huazhong University of Science and Technology, show how a laser technique could permanently stress graphene into having a structure that allows the flow of electric current.

This structure is a so-called "band gap." Electrons need to jump across this gap in order to become conduction electrons, which makes them capable of carrying electric current. But graphene doesn't naturally have a band gap.

Purdue researchers created and widened the band gap in graphene to a record 2.1 electronvolts. To function as a semiconductor such as silicon, the band gap would need to be at least the previous record of 0.5 electronvolts.

"This is the first time that an effort has achieved such high band gaps without affecting graphene itself, such as through chemical doping. We have purely strained the material," said Gary Cheng, professor of industrial engineering at Purdue, whose lab has investigated various ways to make graphene more useful for commercial applications.

The presence of a band gap allows semiconductor materials to switch between insulating or conducting an electric current, depending on whether their electrons are pushed across the band gap or not.

Surpassing 0.5 electronvolts unlocks even more potential for graphene in next-generation electronic devices, the researchers say. Their work appears in an issue of Advanced Materials.

"Researchers in the past opened the band gap by simply stretching graphene, but stretching alone doesn't widen the band gap very much. You need to permanently change the shape of graphene to keep the band gap open," Cheng said.

Cheng and his collaborators not only kept the band gap open in graphene, but also made it to where the gap width could be tuned from zero to 2.1 electronvolts, giving scientists and manufacturers the option to just use certain properties of graphene depending on what they want the material to do.

The researchers made the band gap structure permanent in graphene using a technique called laser shock imprinting, which Cheng developed in 2014 along with scientists at Harvard University, the Madrid Institute for Advanced Studies and the University of California, San Diego.

For this study, the researchers used a laser to create shockwave impulses that penetrated an underlying sheet of graphene. The laser shock strains graphene onto a trench-like mold - permanently shaping it. Adjusting the laser power adjusts the band gap.

While still far from putting graphene into semiconducting devices, the technique grants more flexibility in taking advantage of the material's optical, magnetic and thermal properties, Cheng said.

###

The work was supported by multiple entities, including the National Science Foundation (Grant numbers CMMI-0547636 and CMMI 0928752) and the National Research Council Senior Research Associateship.

####

For more information, please click here

Contacts:
Kayla Wiles

765-494-2432

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE"

Related News Press

News and information

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Graphene/ Graphite

You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications August 14th, 2019

A modified device fabrication process achieves enhanced spin transport in graphene August 6th, 2019

2 Dimensional Materials

You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications August 14th, 2019

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing August 12th, 2019

A modified device fabrication process achieves enhanced spin transport in graphene August 6th, 2019

Magnetism

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

New interaction between thin film magnets discovered: Physicists of Johannes Gutenberg University Mainz lay the foundations for new three-dimensional spin structures June 7th, 2019

Rice U. lab grows stable, ultrathin magnets: Rare iron oxide could be combined with 2D materials for electronic, spintronic devices May 24th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Possible Futures

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Chip Technology

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Toppan Photomasks and GLOBALFOUNDRIES Enter into Multi-Year Supply Agreement August 15th, 2019

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing August 12th, 2019

Nanoelectronics

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Beyond 1 and 0: Engineers boost potential for creating successor to shrinking transistors May 30th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

Discoveries

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Materials/Metamaterials

You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications August 14th, 2019

A modified device fabrication process achieves enhanced spin transport in graphene August 6th, 2019

Rice lab produces simple fluorescent surfactants: Compounds show promise for use in medicine, manufacturing August 5th, 2019

Wood You Like Some Fresh Water? New treatment for wood makes a membrane to extract fresh water August 5th, 2019

Announcements

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Photonics/Optics/Lasers

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

RIT awarded NSF funding to conceptualize Quantum Photonic Institute: RIT will develop plan for open-access Quantum Foundry for quantum photonic circuits August 7th, 2019

Oddball edge wins nanotube faceoff: Rice U. theory shows peculiar 'Janus' interface a common mechanism in carbon nanotube growth July 29th, 2019

Technologies for the Sixth Generation Cellular Network: Ultra-rapid Electro-optical Modulators Convert Terahertz into Optical Data Signals - Publication in Nature Photonics July 25th, 2019

Research partnerships

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project