Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material

The twist angle formed between atomically thin layers of tungsten disulfide and tungsten diselenide acts as a "tuning knob," turning ordinary semiconductors into an exotic quantum material.

CREDIT
Berkeley Lab
The twist angle formed between atomically thin layers of tungsten disulfide and tungsten diselenide acts as a "tuning knob," turning ordinary semiconductors into an exotic quantum material. CREDIT Berkeley Lab

Abstract:
A team of researchers led by the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has developed a simple method that could turn ordinary semiconducting materials into quantum machines - superthin devices marked by extraordinary electronic behavior. Such an advancement could help to revolutionize a number of industries aiming for energy-efficient electronic systems - and provide a platform for exotic new physics.

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material

Berkeley, CA | Posted on March 12th, 2019

The study describing the method, which stacks together 2D layers of tungsten disulfide and tungsten diselenide to create an intricately patterned material, or superlattice, was published online recently in the journal Nature.

"This is an amazing discovery because we didn't think of these semiconducting materials as strongly interacting," said Feng Wang, a condensed matter physicist with Berkeley Lab's Materials Sciences Division and professor of physics at UC Berkeley. "Now this work has brought these seemingly ordinary semiconductors into the quantum materials space."

Two-dimensional (2D) materials, which are just one atom thick, are like nanosized building blocks that can be stacked arbitrarily to form tiny devices. When the lattices of two 2D materials are similar and well-aligned, a repeating pattern called a moiré superlattice can form.

For the past decade, researchers have been studying ways to combine different 2D materials, often starting with graphene - a material known for its ability to efficiently conduct heat and electricity. Out of this body of work, other researchers had discovered that moiré superlattices formed with graphene exhibit exotic physics such as superconductivity when the layers are aligned at just the right angle.

The new study, led by Wang, used 2D samples of semiconducting materials - tungsten disulfide and tungsten diselenide - to show that the twist angle between layers provides a "tuning knob" to turn a 2D semiconducting system into an exotic quantum material with highly interacting electrons.

Entering a new realm of physics

Co-lead authors Chenhao Jin, a postdoctoral scholar, and Emma Regan, a graduate student researcher, both of whom work under Wang in the Ultrafast Nano-Optics Group at UC Berkeley, fabricated the tungsten disulfide and tungsten diselenide samples using a polymer-based technique to pick up and transfer flakes of the materials, each measuring just tens of microns in diameter, into a stack.

They had fabricated similar samples of the materials for a previous study, but with the two layers stacked at no particular angle. When they measured the optical absorption of a new tungsten disulfide and tungsten diselenide sample for the current study, they were taken completely by surprise.

The absorption of visible light in a tungsten disulfide/tungsten diselenide device is largest when the light has the same energy as the system's exciton, a quasiparticle that consists of an electron bound to a hole that is common in 2D semiconductors. (In physics, a hole is a currently vacant state that an electron could occupy.)

For light in the energy range that the researchers were considering, they expected to see one peak in the signal that corresponded to the energy of an exciton.

Instead, they found that the original peak that they expected to see had split into three different peaks representing three distinct exciton states.

What could have increased the number of exciton states in the tungsten disulfide/tungsten device from one to three? Was it the addition of a moiré superlattice?

To find out, their collaborators Aiming Yan and Alex Zettl used a transmission electron microscope (TEM) at Berkeley Lab's Molecular Foundry, a nanoscale science research facility, to take atomic-resolution images of the tungsten disulfide/tungsten diselenide device to check how the materials' lattices were aligned.

The TEM images confirmed what they had suspected all along: the materials had indeed formed a moiré superlattice. "We saw beautiful, repeating patterns over the entire sample," said Regan. "After comparing this experimental observation with a theoretical model, we found that the moiré pattern introduces a large potential energy periodically over the device and could therefore introduce exotic quantum phenomena."

The researchers next plan to measure how this new quantum system could be applied to optoelectronics, which relates to the use of light in electronics; valleytronics, a field that could extend the limits of Moore's law by miniaturizing electronic components; and superconductivity, which would allow electrons to flow in devices with virtually no resistance.

###

Also contributing to the study were researchers from Arizona State University and the National Institute for Materials Science in Japan.

The work was supported by the DOE Office of Science. Additional funding was provided by the National Science Foundation, the Department of Defense, and the Elemental Strategy Initiative conducted by MEXT, Japan, and JSPS KAKENHI. The Molecular Foundry is a DOE Office of Science user facility.

####

About Lawrence Berkeley National Laboratory
Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 13 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab's facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Theresa Duque

510-495-2418

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

An 'exceptionally stable' single-atom catalyst: Single platinum atoms stabilized in C12A7 crystals February 26th, 2020

180 Degree Capital Corp. Reports 15.9% Annual Increase and 0.3% Quarter Increase in Net Asset Value Per Share to $3.06 as of December 31, 2019 February 24th, 2020

The Human Brain/Cloud Interface Research Paper has been Published! February 22nd, 2020

KIST researchers develop high-capacity EV battery materials that double driving range: Everyday materials and simple process used to develop new battery anode materials! Cost-effectiveness and simplicity of process and excellent properties of materials enable mass-production and February 21st, 2020

Black phosphorous tunnel field-effect transistor as an alternative ultra-low power switch? February 21st, 2020

Quantum Physics

10,000 times faster calculations of many-body quantum dynamics possible: Physicists have developed an extremely fast simulation technique to predict the time evolution of interacting electrons February 21st, 2020

CEA-Leti Clears a Path to Developing Ultralow Loss, High-Power Photonics in UV through Mid-Infrared Wavelengths ‘Breakthrough Will Lead to Quantum Computing, Imaging, Sensing, Communication, and Clocks’ February 3rd, 2020

Superconductivity

Better studying superconductivity in single-layer graphene| An existing technique is better suited to describing superconductivity in pure, single-layer graphene than current methods December 13th, 2019

New laser technique images quantum world in a trillionth of a second: Technique captures a process that commonly causes electrical resistance in materials while, in others, can cause the absence of resistance, or superconductivity December 13th, 2019

Thorium superconductivity: Scientists discover a new high-temperature superconductor November 8th, 2019

Researchers synthesize 'impossible' superconductor October 3rd, 2019

Govt.-Legislation/Regulation/Funding/Policy

Black phosphorous tunnel field-effect transistor as an alternative ultra-low power switch? February 21st, 2020

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

Nanotech company granted FDA Fast Track for treatment of head & neck cancer February 10th, 2020

Possible Futures

An 'exceptionally stable' single-atom catalyst: Single platinum atoms stabilized in C12A7 crystals February 26th, 2020

The Human Brain/Cloud Interface Research Paper has been Published! February 22nd, 2020

Russian scientists found an effective way to obtain fuel for hydrogen engines: One of the most promising alternative energy sources is hydrogen, which can be extracted from water and air February 21st, 2020

KIST researchers develop high-capacity EV battery materials that double driving range: Everyday materials and simple process used to develop new battery anode materials! Cost-effectiveness and simplicity of process and excellent properties of materials enable mass-production and February 21st, 2020

Chip Technology

Black phosphorous tunnel field-effect transistor as an alternative ultra-low power switch? February 21st, 2020

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

CEA-Leti Presents High-Performance Processor Breakthrough With Active Interposer and 3D Stacked Chiplets at ISSCC 2020 February 19th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

Optical computing/Photonic computing

Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability November 29th, 2019

Tiny, biocompatible laser could function inside living tissues: Nanolaser has potential to treat neurological disorders or sense disease biomarkers September 23rd, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Breakthrough enables storage and release of mechanical waves without energy loss: The development may have broad implications for efficient harvesting, storing, and control of energy flow for mechanical and optical applications August 30th, 2019

Nanoelectronics

Black phosphorous tunnel field-effect transistor as an alternative ultra-low power switch? February 21st, 2020

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

In leap for quantum computing, silicon quantum bits establish a long-distance relationship: Princeton scientists demonstrate that two silicon quantum bits can communicate across relatively long distances in a turning point for the technology December 27th, 2019

Discoveries

An 'exceptionally stable' single-atom catalyst: Single platinum atoms stabilized in C12A7 crystals February 26th, 2020

The Human Brain/Cloud Interface Research Paper has been Published! February 22nd, 2020

A scaffold at the center of our cellular skeleton: UNIGE researchers have discovered a new nano-structure that lies at the center of our cellular skeleton; this discovery will allow to better understand how the cell maintains its architecture as well as the pathologies associated February 21st, 2020

Russian scientists found an effective way to obtain fuel for hydrogen engines: One of the most promising alternative energy sources is hydrogen, which can be extracted from water and air February 21st, 2020

Announcements

An 'exceptionally stable' single-atom catalyst: Single platinum atoms stabilized in C12A7 crystals February 26th, 2020

180 Degree Capital Corp. Reports 15.9% Annual Increase and 0.3% Quarter Increase in Net Asset Value Per Share to $3.06 as of December 31, 2019 February 24th, 2020

The Human Brain/Cloud Interface Research Paper has been Published! February 22nd, 2020

KIST researchers develop high-capacity EV battery materials that double driving range: Everyday materials and simple process used to develop new battery anode materials! Cost-effectiveness and simplicity of process and excellent properties of materials enable mass-production and February 21st, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

An 'exceptionally stable' single-atom catalyst: Single platinum atoms stabilized in C12A7 crystals February 26th, 2020

The Human Brain/Cloud Interface Research Paper has been Published! February 22nd, 2020

Russian scientists found an effective way to obtain fuel for hydrogen engines: One of the most promising alternative energy sources is hydrogen, which can be extracted from water and air February 21st, 2020

KIST researchers develop high-capacity EV battery materials that double driving range: Everyday materials and simple process used to develop new battery anode materials! Cost-effectiveness and simplicity of process and excellent properties of materials enable mass-production and February 21st, 2020

Military

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Study finds billions of quantum entangled electrons in 'strange metal' Physicists provide direct evidence of entanglement's role in quantum criticality January 16th, 2020

Researchers gain control over internal structure of self-assembled composite materials January 16th, 2020

Nanomaterial fabric destroys nerve agents in battlefield-relevant conditions: Metal-organic framework-based composites don’t need liquid water to work January 14th, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New green technology from UMass Amherst generates electricity 'out of thin air' Renewable device could help mitigate climate change, power medical devices February 17th, 2020

Bubble-capturing surface helps get rid of foam: Bubbly buildup can hinder many industrial processes, but a new method can reduce or even eliminate it February 12th, 2020

Study: Nanoparticles produced from burning coal result in damage to mice lungs, suggesting toxicity to humans February 5th, 2020

MTU engineers examine lithium battery defects January 28th, 2020

Research partnerships

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

A consensus statement establishes the protocols to assess and report stability of perovskite photovoltaic devices February 1st, 2020

New European Project to Fast-Track Adoption Of Cyber-Physical Systems (CPS) by SMEs: DigiFed to Demonstrate Potential of CPS Digital Technologies in Hardware Security, Human-Machine Interaction, and Autonomy for Small & Midsized Companies January 29th, 2020

The Wave of the Future: Researchers achieve first successful generation and detection of pure spin currents in antiferromagnetic materials January 29th, 2020

Quantum nanoscience

CEA-Leti Clears a Path to Developing Ultralow Loss, High-Power Photonics in UV through Mid-Infrared Wavelengths ‘Breakthrough Will Lead to Quantum Computing, Imaging, Sensing, Communication, and Clocks’ February 3rd, 2020

A quantum of solid February 1st, 2020

A quantum breakthrough brings a technique from astronomy to the nano-scale: Multi-messenger approach allows scientists to probe electronic and magnetic materials at ultra-small length scales January 3rd, 2020

Quantum engine operating at maximum power: A new experimental proof-of-concept quantum Otto cycle, using nuclear spins, has reached an efficiency close to its thermodynamic limit at maximum power December 20th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project