Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material

The twist angle formed between atomically thin layers of tungsten disulfide and tungsten diselenide acts as a "tuning knob," turning ordinary semiconductors into an exotic quantum material.

CREDIT
Berkeley Lab
The twist angle formed between atomically thin layers of tungsten disulfide and tungsten diselenide acts as a "tuning knob," turning ordinary semiconductors into an exotic quantum material. CREDIT Berkeley Lab

Abstract:
A team of researchers led by the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has developed a simple method that could turn ordinary semiconducting materials into quantum machines - superthin devices marked by extraordinary electronic behavior. Such an advancement could help to revolutionize a number of industries aiming for energy-efficient electronic systems - and provide a platform for exotic new physics.

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material

Berkeley, CA | Posted on March 12th, 2019

The study describing the method, which stacks together 2D layers of tungsten disulfide and tungsten diselenide to create an intricately patterned material, or superlattice, was published online recently in the journal Nature.

"This is an amazing discovery because we didn't think of these semiconducting materials as strongly interacting," said Feng Wang, a condensed matter physicist with Berkeley Lab's Materials Sciences Division and professor of physics at UC Berkeley. "Now this work has brought these seemingly ordinary semiconductors into the quantum materials space."

Two-dimensional (2D) materials, which are just one atom thick, are like nanosized building blocks that can be stacked arbitrarily to form tiny devices. When the lattices of two 2D materials are similar and well-aligned, a repeating pattern called a moiré superlattice can form.

For the past decade, researchers have been studying ways to combine different 2D materials, often starting with graphene - a material known for its ability to efficiently conduct heat and electricity. Out of this body of work, other researchers had discovered that moiré superlattices formed with graphene exhibit exotic physics such as superconductivity when the layers are aligned at just the right angle.

The new study, led by Wang, used 2D samples of semiconducting materials - tungsten disulfide and tungsten diselenide - to show that the twist angle between layers provides a "tuning knob" to turn a 2D semiconducting system into an exotic quantum material with highly interacting electrons.

Entering a new realm of physics

Co-lead authors Chenhao Jin, a postdoctoral scholar, and Emma Regan, a graduate student researcher, both of whom work under Wang in the Ultrafast Nano-Optics Group at UC Berkeley, fabricated the tungsten disulfide and tungsten diselenide samples using a polymer-based technique to pick up and transfer flakes of the materials, each measuring just tens of microns in diameter, into a stack.

They had fabricated similar samples of the materials for a previous study, but with the two layers stacked at no particular angle. When they measured the optical absorption of a new tungsten disulfide and tungsten diselenide sample for the current study, they were taken completely by surprise.

The absorption of visible light in a tungsten disulfide/tungsten diselenide device is largest when the light has the same energy as the system's exciton, a quasiparticle that consists of an electron bound to a hole that is common in 2D semiconductors. (In physics, a hole is a currently vacant state that an electron could occupy.)

For light in the energy range that the researchers were considering, they expected to see one peak in the signal that corresponded to the energy of an exciton.

Instead, they found that the original peak that they expected to see had split into three different peaks representing three distinct exciton states.

What could have increased the number of exciton states in the tungsten disulfide/tungsten device from one to three? Was it the addition of a moiré superlattice?

To find out, their collaborators Aiming Yan and Alex Zettl used a transmission electron microscope (TEM) at Berkeley Lab's Molecular Foundry, a nanoscale science research facility, to take atomic-resolution images of the tungsten disulfide/tungsten diselenide device to check how the materials' lattices were aligned.

The TEM images confirmed what they had suspected all along: the materials had indeed formed a moiré superlattice. "We saw beautiful, repeating patterns over the entire sample," said Regan. "After comparing this experimental observation with a theoretical model, we found that the moiré pattern introduces a large potential energy periodically over the device and could therefore introduce exotic quantum phenomena."

The researchers next plan to measure how this new quantum system could be applied to optoelectronics, which relates to the use of light in electronics; valleytronics, a field that could extend the limits of Moore's law by miniaturizing electronic components; and superconductivity, which would allow electrons to flow in devices with virtually no resistance.

###

Also contributing to the study were researchers from Arizona State University and the National Institute for Materials Science in Japan.

The work was supported by the DOE Office of Science. Additional funding was provided by the National Science Foundation, the Department of Defense, and the Elemental Strategy Initiative conducted by MEXT, Japan, and JSPS KAKENHI. The Molecular Foundry is a DOE Office of Science user facility.

####

About Lawrence Berkeley National Laboratory
Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 13 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab's facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Theresa Duque

510-495-2418

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Quantum Physics

Data science helps engineers discover new materials for solar cells and LEDs May 24th, 2019

News and information

Big energy savings for tiny machines May 24th, 2019

Light and nanotechnology combined to prevent biofilms on medical implants May 24th, 2019

Scientists break record for highest-temperature superconductor: Experiment produces new material that can conduct electricity perfectly May 24th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

Rice U. lab grows stable, ultrathin magnets: Rare iron oxide could be combined with 2D materials for electronic, spintronic devices May 24th, 2019

Superconductivity

Scientists break record for highest-temperature superconductor: Experiment produces new material that can conduct electricity perfectly May 24th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Data science helps engineers discover new materials for solar cells and LEDs May 24th, 2019

Scientists break record for highest-temperature superconductor: Experiment produces new material that can conduct electricity perfectly May 24th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

Rice U. lab grows stable, ultrathin magnets: Rare iron oxide could be combined with 2D materials for electronic, spintronic devices May 24th, 2019

Possible Futures

Big energy savings for tiny machines May 24th, 2019

Light and nanotechnology combined to prevent biofilms on medical implants May 24th, 2019

Scientists break record for highest-temperature superconductor: Experiment produces new material that can conduct electricity perfectly May 24th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

Chip Technology

Big energy savings for tiny machines May 24th, 2019

Rice U. lab grows stable, ultrathin magnets: Rare iron oxide could be combined with 2D materials for electronic, spintronic devices May 24th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Skoltech researchers developed new perovskite-inspired semiconductors for electronic devices May 13th, 2019

Optical computing/Photonic computing

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Researchers move closer to practical photonic quantum computing: New method fills critical need to measure large-scale quantum correlation of single photons February 28th, 2019

AIM Photonics Attends OFC 2019—the Optical Networking and Communication Conference & Exhibition to Share World-Class Capabilities and Partnership Opportunity Updates February 28th, 2019

Nanoelectronics

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Zips on the nanoscale: New method of synthesising nanographene on metal oxide surfaces March 5th, 2019

Discoveries

Big energy savings for tiny machines May 24th, 2019

Light and nanotechnology combined to prevent biofilms on medical implants May 24th, 2019

Scientists break record for highest-temperature superconductor: Experiment produces new material that can conduct electricity perfectly May 24th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

Announcements

Big energy savings for tiny machines May 24th, 2019

Light and nanotechnology combined to prevent biofilms on medical implants May 24th, 2019

Scientists break record for highest-temperature superconductor: Experiment produces new material that can conduct electricity perfectly May 24th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Data science helps engineers discover new materials for solar cells and LEDs May 24th, 2019

Quantum rebar: Quantum dots enhance stability of solar-harvesting perovskite crystals: Researchers demonstrate that perovskite crystals and quantum dots working together can increase stability of solar materials May 24th, 2019

Scientists break record for highest-temperature superconductor: Experiment produces new material that can conduct electricity perfectly May 24th, 2019

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

Military

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Army discovery opens path to safer batteries May 10th, 2019

Self-powered wearable tech May 8th, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Data science helps engineers discover new materials for solar cells and LEDs May 24th, 2019

Rice U. lab grows stable, ultrathin magnets: Rare iron oxide could be combined with 2D materials for electronic, spintronic devices May 24th, 2019

Artificial photosynthesis transforms carbon dioxide into liquefiable fuels May 22nd, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Research partnerships

Light and nanotechnology combined to prevent biofilms on medical implants May 24th, 2019

Rice U. lab grows stable, ultrathin magnets: Rare iron oxide could be combined with 2D materials for electronic, spintronic devices May 24th, 2019

New data on ultrafast electron photoemission from metallic nanostructures obtained: The results of the Russian-Japanese experiment explain the mechanism of electron photoemission by metallic nanostructures under ultrafast laser excitation May 23rd, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Quantum nanoscience

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project