Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling

The tunneling leakage is a major quantum obstacle which hinders further miniaturization of electronic devices. To explore the miniaturization limits of molecular electronics, the oligo(aryleneethynylene) (OAE) molecules were employed to investigate the transition between through-space tunneling and molecular tunneling. For the shortest OAE molecule, the intrinsic single-molecule charge transport can be outstripped from tunneling leakage at 0.66 nm, suggesting the potential to push the miniaturization limit of molecular electronic devices to the angstrom scale.

CREDIT
Xiamen University
The tunneling leakage is a major quantum obstacle which hinders further miniaturization of electronic devices. To explore the miniaturization limits of molecular electronics, the oligo(aryleneethynylene) (OAE) molecules were employed to investigate the transition between through-space tunneling and molecular tunneling. For the shortest OAE molecule, the intrinsic single-molecule charge transport can be outstripped from tunneling leakage at 0.66 nm, suggesting the potential to push the miniaturization limit of molecular electronic devices to the angstrom scale. CREDIT Xiamen University

Abstract:
Advances of miniaturization in electronics have created dramatic impacts on the industrial innovations and our lives. Nowadays, the semiconductor industry has been devoted to scaling down the feature size of electronic devices to the scale of sub-5 nm. Moore's Law, however, has not been the only priority in semiconductor industry because of some inevitable quantum obstacles which hinder the further miniaturization and integration, such as the tunneling leakage current and the thermal dissipation. As a candidate of the supplementary support and even replacement for future electronic device, the bottom-up strategy to use single molecules as charge transport component can be promising, as the primary molecular elements for building single-molecule electronic components in electronic circuitry possess the intrinsic charge transport properties to overcome the tunneling leakage between the same scale of nanogap distance. Nevertheless, knowing the feature size of the domination of tunneling leakage in molecular electronics is of fundamental significance, which enhances the understanding of the technical limitations and boundaries for using single-molecule components as electronic devices.

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling

Xiamen, China | Posted on December 16th, 2018

By employing a series of oligo(aryleneethynylene) (OAE) derivatives with different numbers of repeating units of ethynylphenyl as molecular ruler, we used mechanically controllable break junction technique to investigate the dominant size ranges of the through-space tunneling (tunneling leakage between the source and drain electrode) and molecular tunneling of single-molecule junctions. To avoid the inevitable snap-back effect during the electrode stretching, which might hinder the detection of some molecular junction configurations at the initial stage of gap opening, we chose the electrode gap closing process to provide precise determination of the electrode-electrode distance for the conductance-nanogap size correlation. Hence, by screening this series of OAE molecules, a correlation of the characterized conductance of the molecules with different lengths and configurations is investigated, and the transition between through-space tunneling and molecular tunneling is quantitatively determined.

By retrieving the most probable conductance-distance evolution from conductance-distance histogram of molecular junction, which we called "master curve", we found direct transition between through-space dominated transport and molecular tunneling dominated transport. Therefore, with the molecular length increases, the effective nanogap distance range where the single-molecule devices properly function, which the molecular tunneling dominated, for each OAE molecule is 0.66~1.2 nm for OAE2, 0.91~1.9 nm for OAE3, 1.2~2.5 nm for OAE4 and 1.5~3.3 nm for OAE5, respectively. These findings suggest that in future single-molecule electronics, to use the intrinsic properties of the target molecules, nanogaps within two terminals must reach a certain range of size according to the target molecules to outstrip the tunneling leakage current. On the other hand, for the smallest OAE2, we obtained a feature size of below 0.66 nm, suggesting the shrinking limit for using molecular electronic device. "These conclusions suggest that assembling conjugated molecules with bottom up strategy for molecular electronics are highly promising for future miniaturization of electronic devices." says Junyang Liu, the first author of the study, who dose his postdoctoral research in Collaborative Innovation Center of Chemistry for Energy Materials, China.

####

For more information, please click here

Contacts:
Wenjing Hong

86-059-221-80680

Copyright © Xiamen University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Breaking the temperature barrier in small-scale materials testing February 28th, 2020

An 'exceptionally stable' single-atom catalyst: Single platinum atoms stabilized in C12A7 crystals February 26th, 2020

180 Degree Capital Corp. Reports 15.9% Annual Increase and 0.3% Quarter Increase in Net Asset Value Per Share to $3.06 as of December 31, 2019 February 24th, 2020

The Human Brain/Cloud Interface Research Paper has been Published! February 22nd, 2020

Hardware

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUMí19 October 14th, 2019

Future of portable electronics -- Novel organic semiconductor with exciting properties: Researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Black phosphorous tunnel field-effect transistor as an alternative ultra-low power switch? February 21st, 2020

Researchers show what drives a novel, ordered assembly of alternating peptides February 20th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

Nanotech company granted FDA Fast Track for treatment of head & neck cancer February 10th, 2020

Possible Futures

Breaking the temperature barrier in small-scale materials testing February 28th, 2020

An 'exceptionally stable' single-atom catalyst: Single platinum atoms stabilized in C12A7 crystals February 26th, 2020

The Human Brain/Cloud Interface Research Paper has been Published! February 22nd, 2020

KIST researchers develop high-capacity EV battery materials that double driving range: Everyday materials and simple process used to develop new battery anode materials! Cost-effectiveness and simplicity of process and excellent properties of materials enable mass-production and February 21st, 2020

Molecular Nanotechnology

DNA origami to scale-up molecular motors June 13th, 2019

Big energy savings for tiny machines May 24th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

Chip Technology

Black phosphorous tunnel field-effect transistor as an alternative ultra-low power switch? February 21st, 2020

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

CEA-Leti Presents High-Performance Processor Breakthrough With Active Interposer and 3D Stacked Chiplets at ISSCC 2020 February 19th, 2020

KIST unveils the mystery of van der Waals magnets, a material for future semiconductors: Overcoming the limits of current magnetic materials, giving hope for development of next-generation semiconductors February 14th, 2020

Nanoelectronics

Black phosphorous tunnel field-effect transistor as an alternative ultra-low power switch? February 21st, 2020

CEA-Leti and CEA-IRIG Demonstrate Quantum Integrated Circuit Combining Quantum Dot with Digital-Analog Circuits on CMOS Chip: Presentation at ISSCC 2020 Shows Role FD-SOI Can Play in Embedding Qubit Arrays with Classic Electronics to Build Large-Scale Quantum Silicon Processors February 20th, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

In leap for quantum computing, silicon quantum bits establish a long-distance relationship: Princeton scientists demonstrate that two silicon quantum bits can communicate across relatively long distances in a turning point for the technology December 27th, 2019

Announcements

Breaking the temperature barrier in small-scale materials testing February 28th, 2020

An 'exceptionally stable' single-atom catalyst: Single platinum atoms stabilized in C12A7 crystals February 26th, 2020

180 Degree Capital Corp. Reports 15.9% Annual Increase and 0.3% Quarter Increase in Net Asset Value Per Share to $3.06 as of December 31, 2019 February 24th, 2020

The Human Brain/Cloud Interface Research Paper has been Published! February 22nd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Breaking the temperature barrier in small-scale materials testing February 28th, 2020

An 'exceptionally stable' single-atom catalyst: Single platinum atoms stabilized in C12A7 crystals February 26th, 2020

The Human Brain/Cloud Interface Research Paper has been Published! February 22nd, 2020

KIST researchers develop high-capacity EV battery materials that double driving range: Everyday materials and simple process used to develop new battery anode materials! Cost-effectiveness and simplicity of process and excellent properties of materials enable mass-production and February 21st, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project