Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling

The tunneling leakage is a major quantum obstacle which hinders further miniaturization of electronic devices. To explore the miniaturization limits of molecular electronics, the oligo(aryleneethynylene) (OAE) molecules were employed to investigate the transition between through-space tunneling and molecular tunneling. For the shortest OAE molecule, the intrinsic single-molecule charge transport can be outstripped from tunneling leakage at 0.66 nm, suggesting the potential to push the miniaturization limit of molecular electronic devices to the angstrom scale.

CREDIT
Xiamen University
The tunneling leakage is a major quantum obstacle which hinders further miniaturization of electronic devices. To explore the miniaturization limits of molecular electronics, the oligo(aryleneethynylene) (OAE) molecules were employed to investigate the transition between through-space tunneling and molecular tunneling. For the shortest OAE molecule, the intrinsic single-molecule charge transport can be outstripped from tunneling leakage at 0.66 nm, suggesting the potential to push the miniaturization limit of molecular electronic devices to the angstrom scale. CREDIT Xiamen University

Abstract:
Advances of miniaturization in electronics have created dramatic impacts on the industrial innovations and our lives. Nowadays, the semiconductor industry has been devoted to scaling down the feature size of electronic devices to the scale of sub-5 nm. Moore's Law, however, has not been the only priority in semiconductor industry because of some inevitable quantum obstacles which hinder the further miniaturization and integration, such as the tunneling leakage current and the thermal dissipation. As a candidate of the supplementary support and even replacement for future electronic device, the bottom-up strategy to use single molecules as charge transport component can be promising, as the primary molecular elements for building single-molecule electronic components in electronic circuitry possess the intrinsic charge transport properties to overcome the tunneling leakage between the same scale of nanogap distance. Nevertheless, knowing the feature size of the domination of tunneling leakage in molecular electronics is of fundamental significance, which enhances the understanding of the technical limitations and boundaries for using single-molecule components as electronic devices.

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling

Xiamen, China | Posted on December 16th, 2018

By employing a series of oligo(aryleneethynylene) (OAE) derivatives with different numbers of repeating units of ethynylphenyl as molecular ruler, we used mechanically controllable break junction technique to investigate the dominant size ranges of the through-space tunneling (tunneling leakage between the source and drain electrode) and molecular tunneling of single-molecule junctions. To avoid the inevitable snap-back effect during the electrode stretching, which might hinder the detection of some molecular junction configurations at the initial stage of gap opening, we chose the electrode gap closing process to provide precise determination of the electrode-electrode distance for the conductance-nanogap size correlation. Hence, by screening this series of OAE molecules, a correlation of the characterized conductance of the molecules with different lengths and configurations is investigated, and the transition between through-space tunneling and molecular tunneling is quantitatively determined.

By retrieving the most probable conductance-distance evolution from conductance-distance histogram of molecular junction, which we called "master curve", we found direct transition between through-space dominated transport and molecular tunneling dominated transport. Therefore, with the molecular length increases, the effective nanogap distance range where the single-molecule devices properly function, which the molecular tunneling dominated, for each OAE molecule is 0.66~1.2 nm for OAE2, 0.91~1.9 nm for OAE3, 1.2~2.5 nm for OAE4 and 1.5~3.3 nm for OAE5, respectively. These findings suggest that in future single-molecule electronics, to use the intrinsic properties of the target molecules, nanogaps within two terminals must reach a certain range of size according to the target molecules to outstrip the tunneling leakage current. On the other hand, for the smallest OAE2, we obtained a feature size of below 0.66 nm, suggesting the shrinking limit for using molecular electronic device. "These conclusions suggest that assembling conjugated molecules with bottom up strategy for molecular electronics are highly promising for future miniaturization of electronic devices." says Junyang Liu, the first author of the study, who dose his postdoctoral research in Collaborative Innovation Center of Chemistry for Energy Materials, China.

####

For more information, please click here

Contacts:
Wenjing Hong

86-059-221-80680

Copyright © Xiamen University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Hardware

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible March 2nd, 2020

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUMí19 October 14th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Fast calculation dials in better batteries: Analytical model from Rice University helps researchers fine-tune battery performance September 16th, 2020

Possible Futures

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Molecular Nanotechnology

DNA origami to scale-up molecular motors June 13th, 2019

Big energy savings for tiny machines May 24th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

Chip Technology

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

FEFU scientists are paving way for future tiny electronics and gadgets August 28th, 2020

A powder method for the high-efficacy measurement of electro-optic coefficients August 21st, 2020

Nanoelectronics

FEFU scientists are paving way for future tiny electronics and gadgets August 28th, 2020

Oriented hexagonal boron nitride foster new type of information carrier May 22nd, 2020

A new strategy to create 2D magnetic order April 10th, 2020

Double-walled nanotubes have electro-optical advantages :Rice University calculations show they could be highly useful for solar panels March 27th, 2020

Announcements

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

Aberrant electronic and structural alterations in pressure tuned perovskite NaOsO3 September 18th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Who stole the light? Self-induced ultrafast demagnetization limits the amount of light diffracted from magnetic samples at soft x-ray energies September 18th, 2020

Nano-microscope gives first direct observation of the magnetic properties of 2D materials: Discovery means new class of materials and technologies September 18th, 2020

Physicists make electrical nanolasers even smaller September 18th, 2020

Shape matters for light-activated nanocatalysts - Study: Pointed tips on aluminum 'octopods' increase catalytic reactivity September 18th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project