Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions

Rice University chemist Matt Jones is one of 18 American scientists to receive the Packard Fellowship for Science and Engineering this year. Jones will use Rice's advanced transmission electron microscope to study the dynamics of chemical processes at the nanoscale. (Credit: Jeff Fitlow/Rice University)
Rice University chemist Matt Jones is one of 18 American scientists to receive the Packard Fellowship for Science and Engineering this year. Jones will use Rice's advanced transmission electron microscope to study the dynamics of chemical processes at the nanoscale. (Credit: Jeff Fitlow/Rice University)

Abstract:
It's one thing to start a chemical reaction and get a result, but it's quite another thing to watch it in progress. Rice University chemist Matt Jones wants to see it happen.



Time-lapsed video shows a 10-nanometer inorganic particle being etched away in a liquid cell, as captured by a transmission electron microscope at the University of California, Berkeley. Rice University chemist Matt Jones filmed the process while working as a postdoctoral researcher there, and has now received a Packard Fellowship to study using the technique to view nanoscale chemical reactions on surfaces. (Credit: Matt Jones/Science Magazine)

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions

Houston, TX | Posted on October 15th, 2018

Jones has won a prestigious Packard Fellowship for Science and Engineering, a five-year, $875,000 grant to pursue research that stretches his lab's abilities. The grant is awarded to only 18 early career faculty members a year and is intended to promote new frontiers in their research.

Jones will use the grant to develop techniques in the relatively new field of liquid cell transmission electron microscopy (TEM) to view chemical processes in real time at the atomic scale. The field was the subject of a recent review paper by Jones in ACS Energy Letters.

"TEM is a tried-and-true characterization tool that has been developed for decades and is extremely useful for looking at all kind of things," said Jones, the Norman and Gene Hackerman Assistant Professor of Chemistry. "It has very high resolution. We can see individual columns of atoms in these images.

"But in order to collect them, the instrument is under high vacuum," he said. "If you put a liquid in a vacuum, it evaporates."

Jones learned during a postdoctoral stint at the University of California, Berkeley, to use hermetically sealed cells that trap minute amounts of liquid in a chamber with micron-sized windows that allow the electron beam to pass through.

"This now lets us use all the technology that's been developed for TEM and leverage it to watch dynamic processes over time in a liquid," he said.

Better yet, the cells allow liquid to flow into the chamber on demand so reactions can be captured from the start. He said the cells can also be heated or incorporate electrodes for the study of batteries or other electrochemical processes.

Jones' pitch to the Packard Foundation was to focus the technique on surface reactions, a critical factor in catalysis and other industrial processes. The lab's initial goals are to capture video of nanocrystal synthesis, protein biofouling of medical devices and catalysis itself.

"I think there's interesting fundamental scientific questions to pursue in each of those categories, but all three of them have potentially important application ramifications as well," he said.

The properties of nanocrystals made by the Jones lab are determined by their sizes and shapes, so seeing them form will be a revelation, he said.

"These particles are going to be important for technological applications," Jones said. "There are now televisions that have quantum dots, so nanocrystals are reaching the stage of commercialization. But fundamentally, we have very little understanding of how they grow."

The biofouling study will view what happens to medical and other devices "when you put them in a solution with a bunch of proteins, like blood or plasma," Jones said.

"Whatever the solution, all kinds of things start to stick to the surface and proteins can denature," he said. "That can elicit an immune response if it's in your body. If we can watch the process happen, there will be no indirect interpretation of the data. You'll see exactly what it does."

Jones called his third area of interest, catalysis, "the quintessential surface science process."

"There's been a lot of good, fundamental work in this field, but watching reactions happen to see how individual molecules or particles behave is a piece of information that is unavailable to science at the moment," he said. "Once we understand how a catalyst works, we can potentially make it more efficient or find materials that accomplish the same reaction that are more abundant and cheaper, use less energy or emit less carbon dioxide."

Jones said part of the draw to Rice was the suite of advanced electron microscopes installed in 2015 at Brockman Hall. "We have one of the most powerful transmission electron microscopes in North America, and it's outfitted with spectroscopy equipment," he said. "Connecting liquid-cell TEM to spectroscopy hasn't really been done yet, but it's in our future. It will be neat if we can get spectroscopic information from dynamic processes."

He expects all the new skills to boost his lab's primary mission: the bottom-up assembly of nanoparticles into useful inorganic materials, including adaptive materials with unique optical and mechanical properties for metamaterials, energy storage and biological applications.

"We had planned to do all this work regardless, but getting the Packard is the cherry on top," he said.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview .

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

New Strategies for Probing Energy Systems with In Situ Liquid-Phase Transmission Electron Microscopy:

Jones Lab:

Rice Department of Chemistry:

Wiess School of Natural Sciences:

Related News Press

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Nanobiotechnology

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project