Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Quantum chains in graphene nanoribbons: Breakthrough in nanoresearch

When graphene nanoribbons contain sections of varying width, very robust new quantum states can be created in the transition zone.

CREDIT
Empa
When graphene nanoribbons contain sections of varying width, very robust new quantum states can be created in the transition zone. CREDIT Empa

Abstract:
A material that consists of atoms of a single element, but has completely different properties depend-ing on the atomic arrangement - this may sound strange, but is actually reality with graphene nano-ribbons. The ribbons, which are only a few carbon atoms wide and exactly one atom thick, have very different electronic properties depending on their shape and width: conductor, semiconductor or insu-lator. An international research team led by Empa's

Quantum chains in graphene nanoribbons: Breakthrough in nanoresearch

St. Gallen, Switzerland | Posted on August 9th, 2018

laboratory has now suc-ceeded in precisely adjusting the properties of the ribbons by specifically varying their shape. The par-ticular feature of this technology is that not only can the «usual» electronic properties mentioned above be varied - it can also be used to generate specific local quantum states.
So what's behind it? If the width of a narrow graphene nanoribbon changes, in this case from seven to nine atoms, a special zone is created at the transition: because the electronic properties of the two ar-eas differ in a special, so-called topological way, a «protected» and thus very robust new quantum state is created in the transition zone. This local electronic quantum state can now be used as a basic component to produce tailor-made semiconductors, metals or insulators - and possibly even as a component in quantum computers.

The Empa researchers under the lead of Oliver Gröning were able to show that if these ribbons are built with regularly alternating zones of different widths, a chain of interlinked quantum states with its own electronic structure is created by the numerous transitions. The exciting thing is that the electronic properties of the chain change depending on the width of the different segments. This allows them to be finely adjusted - from conductors to semiconductors with different bandgaps. This principle can be applied to many different types of transition zones - for example, from seven to eleven atoms.

«The importance of this development is also underlined by the fact that a research group at the Uni-versity of California, Berkeley, came to similar results independently of us,» said Gröning. The work of the US research team has been published in the same issue of Nature.

On the way to nanoelectronics

Based on these novel quantum chains, precise nano-transistors could be manufactured in the future - a fundamental step on the way to nanoelectronics. Whether the switching distance between the «1» state and the «0» state of the nanotransistor is actually large enough depends on the bandgap of the semiconductor - and with the new method this can be set almost at will.

In reality, however, this is not quite as simple: for the chain to have the desired electronic properties, each of the several hundred or even thousands of atoms must be in the right place. «This is based on complex, interdisciplinary research, » says Empa researcher Gröning. «Researchers from different disci-plines in Dübendorf, Mainz, Dresden, and Troy (USA) worked together - from theoretical understanding and specific knowledge of how precursor molecules have to be built and how structures on surfaces can be selectively grown to structural and electronic analysis using a scanning tunneling microscope.»

An excursion into the quantum realm

Ultrasmall transistors - and thus the next step in the further miniaturization of electronic circuits - are the obvious application possibilities here: although they are technically challenging, electronics based on nano-transistors actually work fundamentally the same as today's microelectronics. The semicon-ducting nanoribbons produced by the Empa researchers would allow transistors with a channel cross-section 1,000 times smaller than typically manufactured today. However, further possibilities can also be imagined, for example in the field of spintronics or even quantum informatics.

This is because the electronic quantum states at junctions of graphene nanoribbons of different widths can also carry a magnetic moment. This could make it possible to process information not by charge as was previously customary, but by the so-called spin - in the figurative sense the «direction of rota-tion» of the state. And the development could even go one step further. «We have observed that topological end states occur at the ends of certain quantum chains. This offers the possibility of using them as elements of so-called qubits - the complex, interlocked states in a quantum computer,» ex-plains Oliver Gröning.

Today and tomorrow, however, no quantum computer is built from nanoribbons - there is still a lot of research needed, says Gröning: «The possibility of flexibly adjusting the electronic properties through the targeted combination of individual quantum states represents a major leap for us in the production of new materials for ultra-miniaturized transistors.» The fact that these materials are stable under environmental conditions plays an important role in the development of future applications. "The further-reaching potential of the chains to create local quantum states and link them together in a targeted manner is also fascinating," Gröning continues. «Whether this potential can actually be ex-ploited for future quantum computers remains to be seen, however. It is not enough to create localized topological states in the nanoribbons - these would also have to be coupled with other materials such as superconductors in such a way that the conditions for qubits are actually met.»

####

For more information, please click here

Contacts:
Dr. Oliver Gröning

41-587-654-669

Copyright © EMPA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

‘Anti-rust’ coating for plants protects against disease with cellulose nanofiber: Researchers from the University of Tsukuba find that coating soybean plant leaves with cellulose nanofiber offers resistance to infection by Asian soybean rust pathogen September 10th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Quantum Physics

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Researchers use gold film to enhance quantum sensing with qubits in a 2D material September 3rd, 2021

2 Dimensional Materials

Researchers use gold film to enhance quantum sensing with qubits in a 2D material September 3rd, 2021

Rice physicists find 'magnon' origins in 2D magnet: Topological feature could prove useful for encoding information in electron spins September 3rd, 2021

National 2D materials research center wins NSF funding: Boise State joins Penn State, Rice for Phase II expansion of ATOMIC center August 20th, 2021

National 2D materials research center wins NSF funding: Boise State joins Penn State, Rice for Phase II expansion of ATOMIC center August 20th, 2021

Polymer electrolytes for all-solid-state batteries without dead zones August 20th, 2021

Graphene/ Graphite

National 2D materials research center wins NSF funding: Boise State joins Penn State, Rice for Phase II expansion of ATOMIC center August 20th, 2021

National 2D materials research center wins NSF funding: Boise State joins Penn State, Rice for Phase II expansion of ATOMIC center August 20th, 2021

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

Laboratories

Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021

Verizon and Zurich Instruments join Q-NEXT national quantum science center August 6th, 2021

Possible Futures

‘Anti-rust’ coating for plants protects against disease with cellulose nanofiber: Researchers from the University of Tsukuba find that coating soybean plant leaves with cellulose nanofiber offers resistance to infection by Asian soybean rust pathogen September 10th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Stretching the capacity of flexible energy storage September 10th, 2021

Chip Technology

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Quantum Computing

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Putting a new theory of many-particle quantum systems to the test: Experiments show that generalized hydrodynamics accurately simulates an out-of-equilibrium quantum system September 3rd, 2021

Nanoelectronics

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Non-linear effects in coupled optical microcavities August 5th, 2021

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Using the environment to control quantum devices: A deeper understanding of how the environment impacts quantum behaviour is bringing quantum devices one step closer to widespread adoption June 1st, 2021

Discoveries

Cheaper hydrogen production: Efficient water and urea electrolysis with bimetallic yolk-shell nanoparticles September 10th, 2021

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

‘Anti-rust’ coating for plants protects against disease with cellulose nanofiber: Researchers from the University of Tsukuba find that coating soybean plant leaves with cellulose nanofiber offers resistance to infection by Asian soybean rust pathogen September 10th, 2021

Materials/Metamaterials

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021

Quantum computing enables unprecedented materials science simulations: Multi-institutional team provides a foundation for unraveling the mysteries of magnetic materials August 6th, 2021

Controlling chaos in liquid crystals, gaining precision in autonomous technologies August 6th, 2021

Announcements

‘Anti-rust’ coating for plants protects against disease with cellulose nanofiber: Researchers from the University of Tsukuba find that coating soybean plant leaves with cellulose nanofiber offers resistance to infection by Asian soybean rust pathogen September 10th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Stretching the capacity of flexible energy storage September 10th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

‘Anti-rust’ coating for plants protects against disease with cellulose nanofiber: Researchers from the University of Tsukuba find that coating soybean plant leaves with cellulose nanofiber offers resistance to infection by Asian soybean rust pathogen September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Research partnerships

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

New molecular device has unprecedented reconfigurability reminiscent of brain plasticity: Device can be reconfigured multiple times simply by changing applied voltage September 3rd, 2021

Rice physicists find 'magnon' origins in 2D magnet: Topological feature could prove useful for encoding information in electron spins September 3rd, 2021

Quantum nanoscience

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Researchers use gold film to enhance quantum sensing with qubits in a 2D material September 3rd, 2021

Best of both worlds—Combining classical and quantum systems to meet supercomputing demands: Scientists detect strongly entangled pair of protons on a nanocrystalline silicon surface, potentially enabling new levels of high-speed computing August 13th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project