Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Making quantum puddles: Physicists discover how to create the thinnest liquid films ever

In a vacuum, a suspended sheet of one-atom-thick graphene (brown lattice) could be manipulated to create a liquid film (atoms in dark blue) that stops growing at a thickness between 3 and 50 nanometers. By stretching the graphene, doping it with other atoms, or applying a weak electrical field nearby, the University of Vermont researchers who made the discovery have evidence that the number of atoms in an ultra-thin film can be controlled.
CREDIT
courtesy Adrian Del Maestro et al.
In a vacuum, a suspended sheet of one-atom-thick graphene (brown lattice) could be manipulated to create a liquid film (atoms in dark blue) that stops growing at a thickness between 3 and 50 nanometers. By stretching the graphene, doping it with other atoms, or applying a weak electrical field nearby, the University of Vermont researchers who made the discovery have evidence that the number of atoms in an ultra-thin film can be controlled. CREDIT courtesy Adrian Del Maestro et al.

Abstract:
A team of physicists at the University of Vermont have discovered a fundamentally new way surfaces can get wet. Their study may allow scientists to create the thinnest films of liquid ever made--and engineer a new class of surface coatings and lubricants just a few atoms thick.

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever

Burlington, VT | Posted on June 13th, 2018

"We've learned what controls the thickness of ultra-thin films grown on graphene," says Sanghita Sengupta, a doctoral student at UVM and the lead author on the new study. "And we have a good sense now of what conditions--like knobs you can turn--will change how many layers of atoms will form in different liquids."

The results were published June 8 in the journal Physical Review Letters.

A THIRD WAY

To understand the new physics, imagine what happens when rain falls on your new iPhone: it forms beads on the screen. They're easy to shake off. Now imagine your bathroom after a long shower: the whole mirror may be covered with a thin layer of water. "These are two extreme examples of the physics of wetting," says UVM physicist Adrian Del Maestro, a co-author on the new study. "If interactions inside the liquid are stronger than those between the liquid and surface, the liquid atoms stick together, forming separate droplets. In the opposite case, the strong pull of the surface causes the liquid to spread, forming a thin film."

More than 50 years ago, physicists speculated about a third possibility--a strange phenomena called "critical wetting" where atoms of liquid would start to form a film on a surface, but then would stop building up when they were just a few atoms thick. These scientists in the 1950s, including the famed Soviet physicist Evgeny Lifshitz, weren't sure if critical wetting was real, and they certainly didn't think it would ever be able to be seen in the laboratory.

Then, in 2010, the Nobel Prize in physics was awarded to two Russian scientists for their creation of a bizarre form of carbon called graphene. It's a honeycombed sheet of carbon just one atom thick. It's the strongest material in the world and has many quirky qualities that materials scientists have been exploring ever since.

Graphene turns out to be the "ideal surface to test for critical wetting," says Del Maestro--and with it the Vermont team has now demonstrated mathematically that critical wetting is real.

HARNESSING VAN DER WAALS FORCE

The scientists explored how three light gases--hydrogen, helium and nitrogen--would behave near graphene. In a vacuum and other conditions, they calculated that a liquid layer of these gases will start to form on the one-atom-thick sheet of graphene. But then the film stops growing when "it is ten or twenty atoms thick," says Valeri Kotov, an expert on graphene in UVM's Department of Physics and the senior author on the study.

The explanation can be found in quantum mechanics. Though a neutral atom or molecule--like the light gases studied by the UVM team--has no overall electric charge, the electrons constantly circling the far-off nucleus (OK, "far-off" only from the scale of an electron) form momentary imbalances on one side of the atom or another. These shifts in electron density give rise to one of the pervasive but weak powers in the universe: Van der Waals force. The attraction it creates between atoms only extends a short distance.

Because of the outlandish, perfectly flat geometry of the graphene, there is no electrostatic charge or chemical bond to hold the liquid, leaving the puny van der Waals force to do all the heavy lifting. Which is why the liquid attached to the graphene stops attracting additional atoms out of the vapor when the film has grown to be only a few atoms away from the surface. In comparison, even the thinnest layer of water on your bathroom mirror--which is formed by many much more powerful forces than just the quantum-scale effects of van der Waals force--would be "in the neighborhood of 109 atoms thick," says Del Maestro; that's 1,000,000,000 atoms thick.

APPLIED WETNESS

Engineering a surface where this kind of weak force can be observed has proven very challenging. But the explosion of scientific interest in graphene has allowed the UVM scientists to conclude that critical wetting seems to be a universal phenomenon in the numerous forms of graphene now being created and across the growing family of other two-dimensional materials.

The scientists' models show that, in a vacuum, a suspended sheet of graphene (above) could be manipulated to create a liquid film (atoms in blue, above) that stops growing at a thickness of a much as 50 nanometers, down to a thickness of just three nanometers. "What's important is that we can tune this thickness," says Sengupta. By stretching the graphene, doping it with other atoms, or applying a weak electrical field nearby, the researchers have evidence that the number of atoms in an ultra-thin film can be controlled.

The mechanical adjustment of the graphene could allow real-time changes in the thickness of the liquid film. It might be a bit like turning a "quantum-sized knob," says Nathan Nichols--another UVM doctoral student who worked on the new study--on the outside of an atomic-scale machine in order to change the surface coating on moving parts inside.

Now this team of theoretical physicists--"I'm starting to call what I do dielectric engineering," says Sengupta--is looking for a team of experimental physicists to test their discovery in the lab.

Much of the initial promise of graphene as an industrial product has not yet been realized. Part of the reason why is that many of its special properties--like being a remarkably efficient conductor--go away when thick layers of other materials are stuck to it. But with the control of critical wetting, engineers might be able to customize nanoscale coatings which wouldn't blot out the desired properties of graphene, but could, says Adrian Del Maestro, offer lubrication and protection of "next-generation wearable electronics and displays."

####

For more information, please click here

Contacts:
Joshua Brown

802-656-3039

Copyright © University of Vermont

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Nanobiotix Plans to Conduct Registered Public Offering in the United States January 17th, 2019

Power stations driven by light: More efficient solar cells imitate photosynthesis January 16th, 2019

Drilling speed increased by 20% – yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Chirality in 'real-time' January 14th, 2019

Media invited to open meeting on the future of quantum technology held at RIT Jan. 23-25: Leaders from NASA, NSF, NIST and Sandia National Laboratory to attend January 11th, 2019

Graphene/ Graphite

Drilling speed increased by 20% – yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Boffins manage to keep graphene qubits 'quantum coherent' for all of 55... nanoseconds: Doesn't sound very long, but it could have big implications for quantum computing January 3rd, 2019

Holey graphene as Holy Grail alternative to silicon chips December 28th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

2 Dimensional Materials

2D materials may enable electric vehicles to get 500 miles on a single charge January 11th, 2019

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Rice U. scientists form flat tellurium: Two-dimensional element shows promise for solar cells and other optoelectronics October 26th, 2018

Quantum Physics

Quantum chemistry on quantum computers: A quantum algorithm for tracking complex chemical reactions with neither performing demanding post-Hartree-Fock calculations nor exponential time explosion January 4th, 2019

Satellite study proves global quantum communication will be possible December 28th, 2018

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Display technology/LEDs/SS Lighting/OLEDs

Researchers make liquid crystals do the twist: UMD engineers and scientists measure previously unexamined tiny force December 21st, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Wearable electronics

Eco-friendly waterproof polymer films synthesized using novel method October 31st, 2018

Possible Futures

Nanobiotix Plans to Conduct Registered Public Offering in the United States January 17th, 2019

Power stations driven by light: More efficient solar cells imitate photosynthesis January 16th, 2019

Chirality in 'real-time' January 14th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Chip Technology

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Nanometrics to Participate in the 21st Annual Needham Growth Conference January 7th, 2019

Holey graphene as Holy Grail alternative to silicon chips December 28th, 2018

Study on low noise, high-performance transistors may bring innovations in electronics December 28th, 2018

Discoveries

Power stations driven by light: More efficient solar cells imitate photosynthesis January 16th, 2019

Chirality in 'real-time' January 14th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Materials/Metamaterials

Drilling speed increased by 20% – yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

2D materials may enable electric vehicles to get 500 miles on a single charge January 11th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Announcements

Nanobiotix Plans to Conduct Registered Public Offering in the United States January 17th, 2019

Power stations driven by light: More efficient solar cells imitate photosynthesis January 16th, 2019

Drilling speed increased by 20% – yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Chirality in 'real-time' January 14th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

2D materials may enable electric vehicles to get 500 miles on a single charge January 11th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Water

Study unlocks full potential of 'supermaterial' graphene: Researchers remove silicon contamination from graphene to double its performance November 30th, 2018

Aculon, Inc. Enters into Strategic Partnership Agreement with Henkel Corporation to Supply Key Mobile Device Manufacturers with NanoProof® PCB Waterproof Technology October 17th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Quantum nanoscience

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Quantum chemistry on quantum computers: A quantum algorithm for tracking complex chemical reactions with neither performing demanding post-Hartree-Fock calculations nor exponential time explosion January 4th, 2019

Boffins manage to keep graphene qubits 'quantum coherent' for all of 55... nanoseconds: Doesn't sound very long, but it could have big implications for quantum computing January 3rd, 2019

Researchers make liquid crystals do the twist: UMD engineers and scientists measure previously unexamined tiny force December 21st, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project