Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > The dispute about the origins of terahertz photoresponse in graphene results in a draw

Photoresponse in graphene.
CREDIT
Lion_on_helium, MIPT press office
Photoresponse in graphene. CREDIT Lion_on_helium, MIPT press office

Abstract:
Physicists at MIPT and their British and Russian colleagues revealed the mechanisms leading to photocurrent in graphene under terahertz radiation. The paper published in Applied Physics Letters not only puts a period to a long-lasting debate about the origins of direct current in graphene illuminated by high-frequency radiation but also sets the stage for the development of high-sensitivity terahertz detectors. Such detectors are highly demanded in medical diagnostics, wireless communications and security systems.

The dispute about the origins of terahertz photoresponse in graphene results in a draw

Moscow, Russia | Posted on April 26th, 2018

In 2005 MIPT alumni Andre Geim and Konstantin Novoselov experimentally studied the behavior of electrons in graphene, a flat honeycomb lattice of carbon atoms. They found that electrons in graphene respond to electromagnetic radiation with an energy of quantum, whereas the common semiconductors have an energy threshold below which the material does not respond to light at all. However, the direction of electron motion in graphene exposed to radiation has long remained a point of controversy, as there is a plenty of factors pulling it in different directions. The controversy was especially stark in the case of the photocurrent caused by terahertz radiation.

What sets terahertz radiation apart is its unique set of properties. As an example, it easily passes through many dielectrics without ionizing them: this is of particular value to medical diagnostic or security systems. A terahertz camera can "see" the weapons concealed under a person's clothes, and a medical scanner can detect skin diseases at early stages by the spectral lines ("fingerprints") of characteristic biomolecules in the terahertz range. Finally, raising the carrier frequency of Wi-Fi devices from several to hundreds of gigahertz (into the sub-terahertz range) will proportionally increase the bandwidth. But all these applications need a sensitive and low-noise terahertz detector which is simple in fabrication.

A terahertz detector designed by researchers at MIPT, MSPU and the University of Manchester (the place where graphene was first discovered) is a graphene sheet (colored green in figures 1 and 2) sandwiched between dielectric layers of boron nitride and electrically coupled to a terahertz antenna--a metal spiral about a millimeter in size. As radiation impinges on the antenna, it rocks electrons on one side of the graphene sheet, while the resulting direct current is measured on the other side. It is the "packing" of graphene into boron nitride that enables record-high electric characteristics, giving the detector a sensitivity that is a cut above the earlier designs. However, the main result of the research is not a better-performing instrument; it is the insight into the physical phenomena responsible for the photocurrent.

There are three main effects leading to the electric current flowing in graphene exposed to terahertz radiation. The first one, the photothermoelectric effect, is due to the temperature difference between the antenna terminal and the sensing terminal. This sends electrons from the hot terminal to the cold one, like air rising up from a warm radiator up to cold ceiling. The second effect is the rectification of current at the terminals: it turns out that the edges of graphene let through only the high-frequency signal of a certain polarity. The third and most interesting effect is called plasma wave rectification. We can think of the antenna terminal as stirring up "waves in the electronic sea" of the graphene strip, while the sensing terminal registers the average current associated with these waves.

"Earlier attempts to explain the photocurrent in such detectors used only one of these mechanisms and excluded all the others," says Dmitry Svintsov, head of the Laboratory of 2d Materials' Optoelectronics at MIPT. "In reality, all three of them are at play, and our study found which effect dominates at which conditions. Thermoelectric effects dominate at low temperatures, while plasmonic rectification prevails at high temperatures and in longer-channel instruments. And the main thing is that we figured out how to make a detector in which the different photoresponse mechanisms will not cancel each other, but rather reinforce each other"

These experiments will help choose the best design for terahertz detectors and bring us closer to remote detection of dangerous substances, safe medical diagnostics, and high-speed wireless communications.

###

The work was supported by the Russian Science Foundation, the Ministry of Education and Science of the Russian Federation, the Leverhulme Trust (Great Britain) and the Russian Foundation for Basic Research.

####

For more information, please click here

Contacts:
Ilyana Zolotareva

977-771-4699

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Graphene/ Graphite

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

The moiré patterns of three layers change the electronic properties of graphene March 8th, 2019

Zips on the nanoscale: New method of synthesising nanographene on metal oxide surfaces March 5th, 2019

Hybrid material may outperform graphene in several applications: A structure comprising a molybdenum disulfide monolayer on an azobenzene substrate could be used to build a highly compactable and malleable quasi-two-dimensional transistor powered by light February 28th, 2019

Hall effect becomes viscous in graphene: Researchers at the University of Manchester in the UK have discovered that electrons in graphene act like a very unique liquid February 28th, 2019

Wireless/telecommunications/RF/Antennas/Microwaves

Exchanging information securely using quantum communication in future fiber-optic networks: New research demonstrates potential solutions as transmission networks evolve to use multicore fiber March 6th, 2019

Disruptive by Design: Nano Now February 1st, 2019

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

CEA-Leti Builds Prototype of Next-Generation Mid-Infrared Optical Sensors for Portable Devices: Coin-size, On-chip Sensors that Combine High Performance and Low Power Consumption Presented in Paper at SPIE Photonics West 2019 February 5th, 2019

A bullet-proof heating pad November 2nd, 2018

Possible Futures

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Discoveries

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Announcements

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Tools

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Nanometrics Announces $80 Million Share Repurchase Program March 14th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Homeland Security

A bullet-proof heating pad November 2nd, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Now made in Japan – Asian battery manufacturers welcome highly conductive nanotube additive March 7th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project