Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Imaging technique pulls plasmon data together: Rice University scientists' hyperspectral method analyzes many plasmonic nanoparticles in an instant

Rice University postdoctoral researcher Sean Collins adjusts a laser during experiments to take data from plasmonic nanoparticles. Rice scientists developed a snapshot hyperspectral imaging system to take instantaneous spectra of multiple plasmonic nanoparticles. (Credit: Jeff Fitlow/Rice University)
Rice University postdoctoral researcher Sean Collins adjusts a laser during experiments to take data from plasmonic nanoparticles. Rice scientists developed a snapshot hyperspectral imaging system to take instantaneous spectra of multiple plasmonic nanoparticles. (Credit: Jeff Fitlow/Rice University)

Abstract:
Rice University scientists have developed a novel technique to view a field of plasmonic nanoparticles simultaneously to learn how their differences change their reactivity.

Imaging technique pulls plasmon data together: Rice University scientists' hyperspectral method analyzes many plasmonic nanoparticles in an instant

Houston, TX | Posted on March 16th, 2018

Their new method is called snapshot hyperspectral imaging (SHI), which up to now has been used primarily in astronomy. SHI allows researchers to view minute differences between otherwise identical nanoparticles and see how they react in response to light and environmental changes.

The technique could help industries fine-tune products such as plasmonic catalysts for petrochemical processing, light-triggered nanoparticles for cancer treatment, solar cells and microelectronics.

SHI is detailed in the American Chemical Society's Journal of Physical Chemistry. It was developed by the Rice labs of Stephan Link and Christy Landes, both professors of chemistry and computer and electrical engineering.

Plasmons are the coordinated oscillation of electrons in metals that is triggered by light. Plasmonic nanoparticles are nanometer-sized crystals that absorb and react with light with extraordinary sensitivity. Because their size, shape, composition and local environment all influence their properties, plasmonic nanoparticles can be tuned for a wide range of applications.

Researchers who make and study plasmonic particles generally want to know and control their reactivity, so it is crucial to be able to study many individual particles simultaneously with the best resolution of time, space and energy possible.

Until now, getting all that data has been a challenging process for single particles and impossible to do in real time.

The new method simplifies this challenge by incorporating novel hardware and performing two analyses at once: particle localization and spectroscopy. "Measuring reactions on heterogeneous samples is hard," Landes said. "You want intimate details about how a particle’s surface, shape and size influence its reactivity, but once you go to look at a different particle in the sample with that level of detail, it's too late! It has already reacted."

"The trick here is to take snapshots of many particles while we’re also collecting spectral information," Link said. "When combined, they provide details with millisecond time resolution about many particles while they’re reacting. We don’t have to start the reaction over again to get meaningful statistics."

SHI aligns a microscope, a pair of camera systems, a broad-spectrum supercontinuum laser and a diffraction grating to synchronize multiple streams of data about the target particles in an instant. It matches spatial information with spectral emissions and resolves wavelengths of light to about a fifth of a nanometer. The spectral images have a signal-to-noise ratio above 100-to-1 for ordered arrays. For random arrays with overlapping spectra, the ratio is about 20-to-1.

"When you make a sample of nanoparticles, you don't get particles with exactly the same size and shape," co-author and graduate student Benjamin Hoener said. "You wind up with particles that have defect sites, slightly different shapes and crystal structures that make them absorb light and molecules on their surfaces a little differently."

A snapshot that shows each particle's color and intensity can make those differences obvious. "From that we can get important information about their electrochemical and optical properties," said postdoctoral researcher and co-author Sean Collins.

Co-lead author and graduate student Kyle Smith said SHI captures data in a thousandth of a second. "Processes in these particles occur very quickly, and they're difficult to monitor," he said. "We were able to observe kinetic processes that hadn't been observed at this time scale."

The system allows researchers to get a sense of what's happening around individual particles as well, Hoener said. "Because they're also sensitive to the local environment, we can track when electrochemical reactions occur on a single particle, at what (electrical) potential those reactions occur and compare them to see what makes this process happen faster on one particle than another," he said.

To test the system, the researchers measured randomly deposited gold nanoparticles and gathered up to 20 simultaneous spectra with excellent resolution. In future tests, they anticipate that versions of SHI with more advanced camera sensors will capture spectra of up to 500 individual gold particles simultaneously. They hope to enhance SHI to enable spectroscopic imaging of nanoparticles as they grow from nondetectable seeds.

Rice alumna Silke Kirchner is co-lead author of the paper. Co-authors are Rice graduate students Wenxiao Wang and Yi-Yu Cai and research scientist Wei-Shun Chang; and postdoctoral fellow Calum Kinnear, graduate student Heyou Zhang and Paul Mulvaney, a professor of chemistry, all at the University of Melbourne, Australia.

The research was supported by the Department of Energy Basic Energy Sciences, the Robert A. Welch Foundation, the Air Force Office of Scientific Research, the National Science Foundation and the German Research Foundation.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview .

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link Research Group:

Landes Research Group:

Mulvaney Group:

Wiess School of Natural Sciences:

Related News Press

News and information

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

Imaging

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Scientists image conducting edges in a promising 2-D material February 8th, 2019

Plasmonics

Rice U. lab adds porous envelope to aluminum plasmonics: Scientists marry gas-trapping framework to light-powered nanocatalysts February 10th, 2019

Chemistry

Rice U. lab adds porous envelope to aluminum plasmonics: Scientists marry gas-trapping framework to light-powered nanocatalysts February 10th, 2019

Kanazawa University research: Chirality inversion in a helical molecule at controlled speeds February 6th, 2019

CEA-Leti Builds Prototype of Next-Generation Mid-Infrared Optical Sensors for Portable Devices: Coin-size, On-chip Sensors that Combine High Performance and Low Power Consumption Presented in Paper at SPIE Photonics West 2019 February 5th, 2019

Govt.-Legislation/Regulation/Funding/Policy

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Sensitive sensor detects Down syndrome DNA February 14th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Possible Futures

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

Discoveries

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

Announcements

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

Tools

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Picosun’s ALD encapsulation prevents electronics degradation February 15th, 2019

Scientists image conducting edges in a promising 2-D material February 8th, 2019

Military

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Rice U. lab adds porous envelope to aluminum plasmonics: Scientists marry gas-trapping framework to light-powered nanocatalysts February 10th, 2019

Disruptive by Design: Nano Now February 1st, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Nominations invited for $250,000 Kabiller Prize — the world’s largest monetary award for achievement in nanomedicine: An additional $10,000 award will honor a young investigator in nanoscience, nanomedicine February 7th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Scientists program proteins to pair exactly: Technique paves the way for the creation of protein nanomachines and for the engineering of new cell functions December 21st, 2018

Strem Chemicals, Inc., Receives National Performance Improvement Honor: Company Recognized for Stakeholder Communications December 20th, 2018

Research partnerships

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

CEA-Leti & Stanford Target Edge-AI Apps with Breakthrough Memory Cell: Paper at ISSCC 2019 Presents Proof-of-Concept Multi-Bit Chip That Overcomes NVM’s Read/Write, Latency and Integration Challenges February 20th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project