Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Imaging technique pulls plasmon data together: Rice University scientists' hyperspectral method analyzes many plasmonic nanoparticles in an instant

Rice University postdoctoral researcher Sean Collins adjusts a laser during experiments to take data from plasmonic nanoparticles. Rice scientists developed a snapshot hyperspectral imaging system to take instantaneous spectra of multiple plasmonic nanoparticles. (Credit: Jeff Fitlow/Rice University)
Rice University postdoctoral researcher Sean Collins adjusts a laser during experiments to take data from plasmonic nanoparticles. Rice scientists developed a snapshot hyperspectral imaging system to take instantaneous spectra of multiple plasmonic nanoparticles. (Credit: Jeff Fitlow/Rice University)

Abstract:
Rice University scientists have developed a novel technique to view a field of plasmonic nanoparticles simultaneously to learn how their differences change their reactivity.

Imaging technique pulls plasmon data together: Rice University scientists' hyperspectral method analyzes many plasmonic nanoparticles in an instant

Houston, TX | Posted on March 16th, 2018

Their new method is called snapshot hyperspectral imaging (SHI), which up to now has been used primarily in astronomy. SHI allows researchers to view minute differences between otherwise identical nanoparticles and see how they react in response to light and environmental changes.

The technique could help industries fine-tune products such as plasmonic catalysts for petrochemical processing, light-triggered nanoparticles for cancer treatment, solar cells and microelectronics.

SHI is detailed in the American Chemical Society's Journal of Physical Chemistry. It was developed by the Rice labs of Stephan Link and Christy Landes, both professors of chemistry and computer and electrical engineering.

Plasmons are the coordinated oscillation of electrons in metals that is triggered by light. Plasmonic nanoparticles are nanometer-sized crystals that absorb and react with light with extraordinary sensitivity. Because their size, shape, composition and local environment all influence their properties, plasmonic nanoparticles can be tuned for a wide range of applications.

Researchers who make and study plasmonic particles generally want to know and control their reactivity, so it is crucial to be able to study many individual particles simultaneously with the best resolution of time, space and energy possible.

Until now, getting all that data has been a challenging process for single particles and impossible to do in real time.

The new method simplifies this challenge by incorporating novel hardware and performing two analyses at once: particle localization and spectroscopy. "Measuring reactions on heterogeneous samples is hard," Landes said. "You want intimate details about how a particle’s surface, shape and size influence its reactivity, but once you go to look at a different particle in the sample with that level of detail, it's too late! It has already reacted."

"The trick here is to take snapshots of many particles while we’re also collecting spectral information," Link said. "When combined, they provide details with millisecond time resolution about many particles while they’re reacting. We don’t have to start the reaction over again to get meaningful statistics."

SHI aligns a microscope, a pair of camera systems, a broad-spectrum supercontinuum laser and a diffraction grating to synchronize multiple streams of data about the target particles in an instant. It matches spatial information with spectral emissions and resolves wavelengths of light to about a fifth of a nanometer. The spectral images have a signal-to-noise ratio above 100-to-1 for ordered arrays. For random arrays with overlapping spectra, the ratio is about 20-to-1.

"When you make a sample of nanoparticles, you don't get particles with exactly the same size and shape," co-author and graduate student Benjamin Hoener said. "You wind up with particles that have defect sites, slightly different shapes and crystal structures that make them absorb light and molecules on their surfaces a little differently."

A snapshot that shows each particle's color and intensity can make those differences obvious. "From that we can get important information about their electrochemical and optical properties," said postdoctoral researcher and co-author Sean Collins.

Co-lead author and graduate student Kyle Smith said SHI captures data in a thousandth of a second. "Processes in these particles occur very quickly, and they're difficult to monitor," he said. "We were able to observe kinetic processes that hadn't been observed at this time scale."

The system allows researchers to get a sense of what's happening around individual particles as well, Hoener said. "Because they're also sensitive to the local environment, we can track when electrochemical reactions occur on a single particle, at what (electrical) potential those reactions occur and compare them to see what makes this process happen faster on one particle than another," he said.

To test the system, the researchers measured randomly deposited gold nanoparticles and gathered up to 20 simultaneous spectra with excellent resolution. In future tests, they anticipate that versions of SHI with more advanced camera sensors will capture spectra of up to 500 individual gold particles simultaneously. They hope to enhance SHI to enable spectroscopic imaging of nanoparticles as they grow from nondetectable seeds.

Rice alumna Silke Kirchner is co-lead author of the paper. Co-authors are Rice graduate students Wenxiao Wang and Yi-Yu Cai and research scientist Wei-Shun Chang; and postdoctoral fellow Calum Kinnear, graduate student Heyou Zhang and Paul Mulvaney, a professor of chemistry, all at the University of Melbourne, Australia.

The research was supported by the Department of Energy Basic Energy Sciences, the Robert A. Welch Foundation, the Air Force Office of Scientific Research, the National Science Foundation and the German Research Foundation.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview .

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link Research Group:

Landes Research Group:

Mulvaney Group:

Wiess School of Natural Sciences:

Related News Press

News and information

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Chemistry

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Imaging

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Plasmonics

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

Doing the nano-shimmy: New device modulates light and amplifies tiny signals April 12th, 2018

Plasmons triggered in nanotube quantum wells: Rice, Tokyo Metropolitan scientists create platform for unique near-infrared devices March 16th, 2018

Halas wins American Physical Society's Lilienfeld Prize: Rice University nanoscientist honored for pioneering research in plasmonics October 23rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Possible Futures

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Discoveries

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Announcements

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Tools

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Nanometrics to Participate in the 10th Annual CEO Investor Summit 2018: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2018 in San Francisco June 28th, 2018

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Military

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Cleaning or Etching Items with Unique Geometries Requires Specialized Expertise June 27th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

BNAs improve performance of Li-ion batteries June 27th, 2018

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life June 26th, 2018

Research partnerships

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project