Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Individual quantum dots imaged in 3-D for first time

Conventional STM image of a quantum dot, top, compared with an image produced using the new excited-state SMA-STM technique. 

Graphic courtesy Martin Gruebele
Conventional STM image of a quantum dot, top, compared with an image produced using the new excited-state SMA-STM technique. Graphic courtesy Martin Gruebele

Abstract:
Researchers have developed an imaging technique that uses a tiny, super sharp needle to nudge a single nanoparticle into different orientations and capture 2-D images to help reconstruct a 3-D picture. The method demonstrates imaging of individual nanoparticles at different orientations while in a laser-induced excited state.

Individual quantum dots imaged in 3-D for first time

Champaign, IL | Posted on February 28th, 2018

The findings, published in The Journal of Chemical Physics, brought together researchers from the University of Illinois and the University of Washington, Seattle in a collaborative project through the Beckman Institute for Advanced Science and Technology at the U. of I.

Nanostructures like microchip semiconductors, carbon nanotubes and large protein molecules contain defects that form during synthesis that cause them to differ in composition from one another. However, these defects are not always a bad thing, said Martin Gruebele, the lead author and an Illinois chemistry professor and chair.

“The term ‘defect’ is a bit of a misnomer,” Gruebele said. “For example, semiconductors are manufactured with intentional defects that form the ‘holes’ that electrons jump into to produce electrical conductivity. Having the ability to image those defects could let us better characterize them and control their production.”

As advances in technology allow for smaller and smaller nanoparticles, it is critical for engineers to know the precise number and location of these defects to assure quality and functionality.

The study focused on a class of nanoparticles called quantum dots. These dots are tiny, near-spherical semiconductors used in technology like solar panels, live cell imaging and molecular electronics – the basis for quantum computing.

The team observed the quantum dots using a single-molecule absorption scanning tunneling microscope fitted with a needle sharpened to a thickness of only one atom at its tip. The needle nudges the individual particles around on a surface and scans them to get a view of the quantum dot from different orientations to produce a 3-D image.

The researchers said there are two distinct advantages of the new SMA-STM method when compared with the current technology – the Nobel Prize-winning technique called cryogenic electron tomography.

“Instead of an image produced using an average of thousands of different particles, as is done with CryoET, SMA-STM can produce an image from a single particle in about 20 different orientations,” Gruebele said. “And because we are not required to chill the particles to near-absolute zero temperatures, we can capture the particles at room temperature, not frozen and motionless.”

The researchers looked at semiconductor quantum dots for this study, but SMA-STM can also be used to explore other nanostructures such as carbon nanotubes, metal nanoparticles or synthetic macromolecules. The group believes the technique can be refined for use with soft materials like protein molecules, Gruebele said.

The researchers are working to advance SMA-STM into a single-particle tomography technique, meaning that they will need to prove that method is noninvasive.

“For SMA-STM to become a true single-particle tomography technique, we will need to prove that our nudges do not damage or score the nanoparticle in any way while rolled around,” Gruebele said. “Knocking off just one atom can fundamentally alter the defect structure of the nanoparticle.”

The National Science Foundation, the Eiszner Family Foundation and the Beckman Institute supported this research.

####

Contacts:
LOIS YOKSOULIAN
PHYSICAL SCIENCES EDITOR
17-244-2788


Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Imaging

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

New insight into molecular processes November 23rd, 2018

Park Systems Announces Grand Opening Ceremony for Their New Office in Beijing China November 19th, 2018

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

Videos/Movies

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

The National Graphene Association Is Excited To Announce A New Affiliate Partnership With Graphene Engineering Innovation Centre (GEIC) November 7th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

A New Way to Measure Nearly Nothing: NIST prototype design uses ultracold trapped atoms to measure pressure October 22nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

It's not a shock: Better bandage promotes powerful healing November 29th, 2018

French Researchers Extend Reach of Mass Spectrometry with Nanomechanical Resonators: Neutral Mass Spectrometry’ Fills Gap In Existing Weighing Technologies November 27th, 2018

Possible Futures

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Discoveries

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Announcements

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Tools

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

Nanoscribe Presents Successor Model Photonic Professional GT2 for High-Resolution 3D Microfabrication: The first ever production of structures in millimeter size with micrometer precision December 4th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New research could fine-tune the gene scissors CRISPR December 1st, 2018

Research Pioneers: Five UCSB professors are named Fellows of the American Association for the Advancement of Science November 27th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Quantum Dots/Rods

Machine learning helps improving photonic applications September 28th, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project