Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Individual quantum dots imaged in 3-D for first time

Conventional STM image of a quantum dot, top, compared with an image produced using the new excited-state SMA-STM technique. 

Graphic courtesy Martin Gruebele
Conventional STM image of a quantum dot, top, compared with an image produced using the new excited-state SMA-STM technique. Graphic courtesy Martin Gruebele

Abstract:
Researchers have developed an imaging technique that uses a tiny, super sharp needle to nudge a single nanoparticle into different orientations and capture 2-D images to help reconstruct a 3-D picture. The method demonstrates imaging of individual nanoparticles at different orientations while in a laser-induced excited state.

Individual quantum dots imaged in 3-D for first time

Champaign, IL | Posted on February 28th, 2018

The findings, published in The Journal of Chemical Physics, brought together researchers from the University of Illinois and the University of Washington, Seattle in a collaborative project through the Beckman Institute for Advanced Science and Technology at the U. of I.

Nanostructures like microchip semiconductors, carbon nanotubes and large protein molecules contain defects that form during synthesis that cause them to differ in composition from one another. However, these defects are not always a bad thing, said Martin Gruebele, the lead author and an Illinois chemistry professor and chair.

“The term ‘defect’ is a bit of a misnomer,” Gruebele said. “For example, semiconductors are manufactured with intentional defects that form the ‘holes’ that electrons jump into to produce electrical conductivity. Having the ability to image those defects could let us better characterize them and control their production.”

As advances in technology allow for smaller and smaller nanoparticles, it is critical for engineers to know the precise number and location of these defects to assure quality and functionality.

The study focused on a class of nanoparticles called quantum dots. These dots are tiny, near-spherical semiconductors used in technology like solar panels, live cell imaging and molecular electronics – the basis for quantum computing.

The team observed the quantum dots using a single-molecule absorption scanning tunneling microscope fitted with a needle sharpened to a thickness of only one atom at its tip. The needle nudges the individual particles around on a surface and scans them to get a view of the quantum dot from different orientations to produce a 3-D image.

The researchers said there are two distinct advantages of the new SMA-STM method when compared with the current technology – the Nobel Prize-winning technique called cryogenic electron tomography.

“Instead of an image produced using an average of thousands of different particles, as is done with CryoET, SMA-STM can produce an image from a single particle in about 20 different orientations,” Gruebele said. “And because we are not required to chill the particles to near-absolute zero temperatures, we can capture the particles at room temperature, not frozen and motionless.”

The researchers looked at semiconductor quantum dots for this study, but SMA-STM can also be used to explore other nanostructures such as carbon nanotubes, metal nanoparticles or synthetic macromolecules. The group believes the technique can be refined for use with soft materials like protein molecules, Gruebele said.

The researchers are working to advance SMA-STM into a single-particle tomography technique, meaning that they will need to prove that method is noninvasive.

“For SMA-STM to become a true single-particle tomography technique, we will need to prove that our nudges do not damage or score the nanoparticle in any way while rolled around,” Gruebele said. “Knocking off just one atom can fundamentally alter the defect structure of the nanoparticle.”

The National Science Foundation, the Eiszner Family Foundation and the Beckman Institute supported this research.

####

Contacts:
LOIS YOKSOULIAN
PHYSICAL SCIENCES EDITOR
17-244-2788


Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Improving quantum computers April 19th, 2019

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

A light-activated remote control for cells April 17th, 2019

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Videos/Movies

New microscopy method provides more details about nanocomposites April 12th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

Imaging

New microscopy method provides more details about nanocomposites April 12th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

A light-activated remote control for cells April 17th, 2019

Arrowhead Pharmaceuticals Receives FDA Clearance to Begin Phase 2/3 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease April 15th, 2019

New microscopy method provides more details about nanocomposites April 12th, 2019

Possible Futures

Improving quantum computers April 19th, 2019

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

A light-activated remote control for cells April 17th, 2019

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

Discoveries

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

A light-activated remote control for cells April 17th, 2019

Arrowhead Pharmaceuticals Receives FDA Clearance to Begin Phase 2/3 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease April 15th, 2019

New microscopy method provides more details about nanocomposites April 12th, 2019

Announcements

Improving quantum computers April 19th, 2019

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

A light-activated remote control for cells April 17th, 2019

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Improving quantum computers April 19th, 2019

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

A light-activated remote control for cells April 17th, 2019

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

Tools

New microscopy method provides more details about nanocomposites April 12th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

Nanometrics to Announce First Quarter Financial Results on April 30, 2019 April 10th, 2019

Izon Science heralds a new era in exosome isolation April 2nd, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

'Nanobodies' from alpacas could help bring CAR T-cell therapy to solid tumors: Unusually small antibodies, targeted to the tumor micro-environment, curb melanoma and colon cancer in mouse models April 11th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

'Deep learning' casts wide net for novel 2D materials: Rice U. engineers show faster techniques to model atom-flat materials for bottom-up design April 10th, 2019

Odd reaction creates a stir in the lab: Rice University researchers find using certain stir bars can create laboratory errors March 29th, 2019

Quantum Dots/Rods

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Machine learning helps improving photonic applications September 28th, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project