Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Vanadium dioxyde: A revolutionary material for tomorrow's electronics: Phase-chance switch can now be performed at higher temperatures

This is a Vanadium Dioxyde chip developed at EPFL's NANOLAB.
CREDIT
EPFL / Jamani Caillet
This is a Vanadium Dioxyde chip developed at EPFL's NANOLAB. CREDIT EPFL / Jamani Caillet

Abstract:
First came the switch. Then the transistor. Now another innovation stands to revolutionize the way we control the flow of electrons through a circuit: vanadium dioxide (VO2). A key characteristic of this compound is that it behaves as an insulator at room temperature but as a conductor at temperatures above 68°C. This behavior - also known as metal-insulator transition - is being studied in an ambitious EU Horizon 2020 project called Phase-Change Switch. EPFL was chosen to coordinate the project following a challenging selection process.

Vanadium dioxyde: A revolutionary material for tomorrow's electronics: Phase-chance switch can now be performed at higher temperatures

Lausanne, Switzerland | Posted on February 5th, 2018

The project will last until 2020 and has been granted €3.9 million of EU funding. Due to the array of high-potential applications that could come out of this new technology, the project has attracted two major companies - Thales of France and the Swiss branch of IBM Research - as well as other universities, including Max-Planck-Gesellschaft in Germany and Cambridge University in the UK. Gesellschaft für Angewandte Mikro- und Optoelektronik (AMO GmbH), a spin-off of Aachen University in Germany, is also taking part in the research.

Scientists have long known about the electronic properties of VO2 but haven't been able to explain them until know. It turns out that its atomic structure changes as the temperature rises, transitioning from a crystalline structure at room temperature to a metallic one at temperatures above 68°C. And this transition happens in less than a nanosecond - a real advantage for electronics applications. "VO2 is also sensitive to other factors that could cause it to change phases, such as by injecting electrical power, optically, or by applying a THz radiation pulse," says Adrian Ionescu, the EPFL professor who heads the school's Nanoelectronic Devices Laboratory (Nanolab) and also serves as the Phase-Change Switch project coordinator.

The challenge: reaching higher temperatures

However, unlocking the full potential of VO2 has always been tricky because its transition temperature of 68°C is too low for modern electronic devices, where circuits must be able to run flawlessly at 100°C. But two EPFL researchers - Ionescu from the School of Engineering (STI) and Andreas Schüler from the School of Architecture, Civil and Environmental Engineering (ENAC) - may have found a solution to this problem, according to their joint research published in Applied Physics Letters in July 2017. They found that adding germanium to VO2 film can lift the material's phase change temperature to over 100°C.

Even more interesting findings from the Nanolab - especially for radiofrequency applications - were published in IEEE Access on 2 February 2018. For the first time ever, scientists were able to make ultra-compact, modulable frequency filters. Their technology also uses VO2 and phase-change switches, and is particularly effective in the frequency range crucial for space communication systems (the Ka band, with programmable frequency modulation between 28.2 and 35 GHz).

Neuromorphic processors and autonomous vehicles

These promising discoveries are likely to spur further research into applications for VO2 in ultra-low-power electronic devices. In addition to space communications, other fields could include neuromorphic computing and high-frequency radars for self-driving cars.

####

For more information, please click here

Contacts:
Adrian Ionescu

41-216-933-978

Copyright © Ecole Polytechnique Fédérale de Lausanne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Wireless/telecommunications/RF/Antennas/Microwaves

Analog Bits and GLOBALFOUNDRIES Deliver Differentiated Analog and Mixed Signal IP for High-Performance Mobile and Compute Applications: Analog Bits’ Analog and Mixed Signal IPs Including Various PLLs, PCIe Reference Clock, Sensors and Power Circuits with GLOBALFOUNDRIES 12nm Fin June 5th, 2019

Secure metropolitan quantum networks move a step closer May 31st, 2019

Exchanging information securely using quantum communication in future fiber-optic networks: New research demonstrates potential solutions as transmission networks evolve to use multicore fiber March 6th, 2019

Disruptive by Design: Nano Now February 1st, 2019

Govt.-Legislation/Regulation/Funding/Policy

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Possible Futures

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Chip Technology

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Nanoelectronics

Beyond 1 and 0: Engineers boost potential for creating successor to shrinking transistors May 30th, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

Discoveries

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Materials/Metamaterials

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Building next gen smart materials with the power of sound May 28th, 2019

ZEN gets $1m grant for graphene-enhanced concrete project May 12th, 2019

Announcements

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Automotive/Transportation

Good vibrations: Using piezoelectricity to ensure hydrogen sensor sensitivity May 24th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Transforming waste heat into clean energy: Researchers use supercomputers to explore new materials for thermoelectric generation May 2nd, 2019

Magnetoresistive sensors for near future innovative development March 22nd, 2019

Research partnerships

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

Shaking hands with human or robot? Nanotubes make them alike as never before June 6th, 2019

Beyond 1 and 0: Engineers boost potential for creating successor to shrinking transistors May 30th, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project