Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Measuring the temperature of two-dimensional materials at the atomic level

Robert Klie, professor of physics. Photo: Jenny Fontaine
Robert Klie, professor of physics. Photo: Jenny Fontaine

Abstract:
Researchers at the University of Illinois at Chicago describe a new technique for precisely measuring the temperature and behavior of new two-dimensional materials that will allow engineers to design smaller and faster microprocessors. Their findings are reported in the journal Physical Review Letters.

Measuring the temperature of two-dimensional materials at the atomic level

Chicago, IL | Posted on February 3rd, 2018

Newly developed two-dimensional materials, such as graphene -- which consists of a single layer of carbon atoms -- have the potential to replace traditional microprocessing chips based on silicon, which have reached the limit of how small they can get. But engineers have been stymied by the inability to measure how temperature will affect these new materials, collectively known as transition metal dichalcogenides, or TMDs.

Using scanning transmission electron microscopy combined with spectroscopy, researchers at UIC were able to measure the temperature of several two-dimensional materials at the atomic level, paving the way for much smaller and faster microprocessors. They were also able to use their technique to measure how the two-dimensional materials would expand when heated.

"Microprocessing chips in computers and other electronics get very hot, and we need to be able to measure not only how hot they can get, but how much the material will expand when heated," said Robert Klie, professor of physics at UIC and corresponding author of the paper. "Knowing how a material will expand is important because if a material expands too much, connections with other materials, such as metal wires, can break and the chip is useless."

Traditional ways to measure temperature don't work on tiny flakes of two-dimensional materials that would be used in microprocessors because they are just too small. Optical temperature measurements, which use a reflected laser light to measure temperature, can't be used on TMD chips because they don't have enough surface area to accommodate the laser beam.

"We need to understand how heat builds up and how it is transmitted at the interface between two materials in order to build efficient microprocessors that work," said Klie.

Klie and his colleagues devised a way to take temperature measurements of TMDs at the atomic level using scanning transition electron microscopy, which uses a beam of electrons transmitted through a specimen to form an image.

"Using this technique, we can zero in on and measure the vibration of atoms and electrons, which is essentially the temperature of a single atom in a two-dimensional material," said Klie. Temperature is a measure of the average kinetic energy of the random motions of the particles, or atoms that make up a material. As a material gets hotter, the frequency of the atomic vibration gets higher. At absolute zero, the lowest theoretical temperature, all atomic motion stops.

Klie and his colleagues heated microscopic "flakes" of various TMDs inside the chamber of a scanning transmission electron microscope to different temperatures and then aimed the microscope's electron beam at the material. Using a technique called electron energy-loss spectroscopy, they were able to measure the scattering of electrons off the two-dimensional materials caused by the electron beam. The scattering patterns were entered into a computer model that translated them into measurements of the vibrations of the atoms in the material - in other words, the temperature of the material at the atomic level.

"With this new technique, we can measure the temperature of a material with a resolution that is nearly 10 times better than conventional methods," said Klie. "With this new approach, we can design better electronic devices that will be less prone to overheating and consume less power."

The technique can also be used to predict how much materials will expand when heated and contract when cooled, which will help engineers build chips that are less prone to breaking at points where one material touches another, such as when a two-dimensional material chip makes contact with a wire.

"No other method can measure this effect at the spatial resolution we report," said Klie. "This will allow engineers to design devices that can manage temperature changes between two different materials at the nano-scale level."

###

Xuan Hu, Poya Yasaei, Jacob Jokisaari, Serdar Ogut and Amin Salehi-Khojin of the University of Illinois at Chicago, are co-authors of the paper.

This research was supported by EFRI 2-DARE grant 1542864 from the National Science Foundation.

####

For more information, please click here

Contacts:
Sharon Parmet

312-413-2695

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

2 Dimensional Materials

Kanazawa University research: Opposite piezoresistant effects of rhenium disulfide in two principle directions June 13th, 2019

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

UCI scientists create new class of two-dimensional materials: Fabrication could help unlock new quantum computing and energy technologies June 6th, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Hardware

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Picosunís ALD encapsulation prevents electronics degradation February 15th, 2019

Govt.-Legislation/Regulation/Funding/Policy

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Possible Futures

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Chip Technology

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Nanoelectronics

Beyond 1 and 0: Engineers boost potential for creating successor to shrinking transistors May 30th, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

From 2D to 1D: Atomically quasi '1D' wires using a carbon nanotube template: New bulk synthesis method for nanowires of molybdenum telluride for nanoelectronics April 19th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

Discoveries

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Materials/Metamaterials

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Building next gen smart materials with the power of sound May 28th, 2019

ZEN gets $1m grant for graphene-enhanced concrete project May 12th, 2019

Announcements

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Tools

University of Aberdeen use the Deben CT5000 to observe compressive damage mechanisms in syntactic foam June 14th, 2019

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

nPoint piezo driven nanopositioning flexure stages now available from Elliot Scientific June 4th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project