Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Measuring the temperature of two-dimensional materials at the atomic level

Robert Klie, professor of physics. Photo: Jenny Fontaine
Robert Klie, professor of physics. Photo: Jenny Fontaine

Abstract:
Researchers at the University of Illinois at Chicago describe a new technique for precisely measuring the temperature and behavior of new two-dimensional materials that will allow engineers to design smaller and faster microprocessors. Their findings are reported in the journal Physical Review Letters.

Measuring the temperature of two-dimensional materials at the atomic level

Chicago, IL | Posted on February 3rd, 2018

Newly developed two-dimensional materials, such as graphene -- which consists of a single layer of carbon atoms -- have the potential to replace traditional microprocessing chips based on silicon, which have reached the limit of how small they can get. But engineers have been stymied by the inability to measure how temperature will affect these new materials, collectively known as transition metal dichalcogenides, or TMDs.

Using scanning transmission electron microscopy combined with spectroscopy, researchers at UIC were able to measure the temperature of several two-dimensional materials at the atomic level, paving the way for much smaller and faster microprocessors. They were also able to use their technique to measure how the two-dimensional materials would expand when heated.

"Microprocessing chips in computers and other electronics get very hot, and we need to be able to measure not only how hot they can get, but how much the material will expand when heated," said Robert Klie, professor of physics at UIC and corresponding author of the paper. "Knowing how a material will expand is important because if a material expands too much, connections with other materials, such as metal wires, can break and the chip is useless."

Traditional ways to measure temperature don't work on tiny flakes of two-dimensional materials that would be used in microprocessors because they are just too small. Optical temperature measurements, which use a reflected laser light to measure temperature, can't be used on TMD chips because they don't have enough surface area to accommodate the laser beam.

"We need to understand how heat builds up and how it is transmitted at the interface between two materials in order to build efficient microprocessors that work," said Klie.

Klie and his colleagues devised a way to take temperature measurements of TMDs at the atomic level using scanning transition electron microscopy, which uses a beam of electrons transmitted through a specimen to form an image.

"Using this technique, we can zero in on and measure the vibration of atoms and electrons, which is essentially the temperature of a single atom in a two-dimensional material," said Klie. Temperature is a measure of the average kinetic energy of the random motions of the particles, or atoms that make up a material. As a material gets hotter, the frequency of the atomic vibration gets higher. At absolute zero, the lowest theoretical temperature, all atomic motion stops.

Klie and his colleagues heated microscopic "flakes" of various TMDs inside the chamber of a scanning transmission electron microscope to different temperatures and then aimed the microscope's electron beam at the material. Using a technique called electron energy-loss spectroscopy, they were able to measure the scattering of electrons off the two-dimensional materials caused by the electron beam. The scattering patterns were entered into a computer model that translated them into measurements of the vibrations of the atoms in the material - in other words, the temperature of the material at the atomic level.

"With this new technique, we can measure the temperature of a material with a resolution that is nearly 10 times better than conventional methods," said Klie. "With this new approach, we can design better electronic devices that will be less prone to overheating and consume less power."

The technique can also be used to predict how much materials will expand when heated and contract when cooled, which will help engineers build chips that are less prone to breaking at points where one material touches another, such as when a two-dimensional material chip makes contact with a wire.

"No other method can measure this effect at the spatial resolution we report," said Klie. "This will allow engineers to design devices that can manage temperature changes between two different materials at the nano-scale level."

###

Xuan Hu, Poya Yasaei, Jacob Jokisaari, Serdar Ogut and Amin Salehi-Khojin of the University of Illinois at Chicago, are co-authors of the paper.

This research was supported by EFRI 2-DARE grant 1542864 from the National Science Foundation.

####

For more information, please click here

Contacts:
Sharon Parmet

312-413-2695

Copyright © University of Illinois at Chicago

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

2 Dimensional Materials

Flipping the switch on supramolecular electronics August 14th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Quantum chains in graphene nanoribbons: Breakthrough in nanoresearch August 9th, 2018

Hardware

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Building nanomaterials for next-generation computing: Scientists recently developed a blueprint to fabricate new nanoheterostructures using 2D materials June 1st, 2018

Novel method to fabricate nanoribbons from speeding nano droplets May 29th, 2018

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Possible Futures

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Chip Technology

Flipping the switch on supramolecular electronics August 14th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Quantum chains in graphene nanoribbons: Breakthrough in nanoresearch August 9th, 2018

Nanoelectronics

Flipping the switch on supramolecular electronics August 14th, 2018

Quantum chains in graphene nanoribbons: Breakthrough in nanoresearch August 9th, 2018

Nanotube 'rebar' makes graphene twice as tough: Rice University scientists test material that shows promise for flexible electronics August 3rd, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

Discoveries

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Materials/Metamaterials

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions August 10th, 2018

Announcements

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Tools

Nanometrics Delivers 100th: Atlas III System for Advanced Process Control Metrology Atlas III: Systems are qualified and in production for advanced devices in DRAM, 3D-NAND and Foundry/Logic August 2nd, 2018

Picosun’s ALD solutions make quality watches tick July 26th, 2018

Nanometrics Announces Participation in Upcoming Investor Conferences July 25th, 2018

Researchers use nanotechnology to improve the accuracy of measuring devices July 24th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project