Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Solid State Laser manufacturer Lasertel Inc. purchases an Oxford Instruments ICPCVD advanced deposition solution for improved device performance

Abstract:
Oxford Instruments Plasma Technology is pleased to announce that Lasertel Inc of Arizona, US have recently purchased one of their advanced inductively coupled plasma chemical vapour deposition (ICPCVD) systems for the manufacture of Solid State Lasers (SSL). Creation of high density plasmas in the ICP source means the ICPCVD technique delivers deposition of high quality dielectric films at low temperature with low damage. Low temperature deposition ensures temperature sensitive films and devices can be processed successfully. This process solution from Oxford Instruments achieves industry leading film quality at low deposition temperatures, opening up a wider parameter window for laser device requirements.

Solid State Laser manufacturer Lasertel Inc. purchases an Oxford Instruments ICPCVD advanced deposition solution for improved device performance

Abingdon, UK | Posted on November 3rd, 2017

Chris Hodson, Senior Deposition Product Manager, Oxford Instruments comments: ‘We have a long history of working with SSL manufacturers and have developed our latest process solutions to fit closely with the ever increasing demands of our customers to improve their manufacturing process. By using this technology Lasertel are able to push their device performance’.

Prabhu Thiagarajan, Lasertel VP of Engineering, says: ‘We have relied on equipment from Oxford Instruments for many years and are grateful for their partnership with us to push the envelope on our more demanding applications’


####

About Oxford Instruments Plasma Technology
Oxford Instruments Plasma Technology offers flexible, configurable process tools and leading-edge processes for the precise, controllable and repeatable engineering of micro- and nano-structures. Our systems provide process solutions for the etching of nanometre sized features, nanolayer deposition and the controlled growth of nanostructures.

These solutions are based on core technologies in plasma-enhanced deposition and etch, ion-beam deposition and etch, atomic layer deposition, deep silicon etch and physical vapour deposition. Products range from compact stand-alone systems for R&D, through batch tools and up to clustered cassette-to-cassette platforms for high-throughput production processing.

About Oxford Instruments plc

Oxford Instruments designs, supplies and supports high-technology tools and systems with a focus on research and industrial applications. Innovation has been the driving force behind Oxford Instruments' growth and success for over 50 years, and its strategy is to effect the successful commercialisation of these ideas by bringing them to market in a timely and customer-focused fashion. The first technology business to be spun out from Oxford University, Oxford Instruments is now a global company and is listed on the London Stock Exchange (OXIG). Its objective is to be the leading provider of new generation tools and systems for the research and industrial sectors with a focus on nanotechnology. Its key market sectors include nano-fabrication and nano-materials. The company’s strategy is to expand the business into the life sciences arena, where nanotechnology and biotechnology intersect

This involves the combination of core technologies in areas such as low temperature, high magnetic field and ultra high vacuum environments; Nuclear Magnetic Resonance; X-ray, electron, laser and optical based metrology; atomic force microscopy; optical imaging; advanced growth, deposition and etching.

Oxford Instruments aims to pursue responsible development and deeper understanding of our world through science and technology. Its products, expertise, and ideas address global issues such as energy, environment, security and health.

Contacts:
Claire Kiermasz
Marketing Communications Manager
Oxford Instruments Plasma Technology

Tel: +44 (0)1934 837000
Fax: +44 (0)1934 837001

Copyright © Oxford Instruments Plasma Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Imaging

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Tools

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Terahertz spectroscopy enters the single-molecule regime September 7th, 2018

Mirrorcle Demonstrates MEMS-based Programmable Light Source at CES and PW18 August 30th, 2018

Stress-free ALD from Picosun August 28th, 2018

New-Contracts/Sales/Customers

Nanometrics Delivers 100th: Atlas III System for Advanced Process Control Metrology Atlas III: Systems are qualified and in production for advanced devices in DRAM, 3D-NAND and Foundry/Logic August 2nd, 2018

Picosun’s ALD solutions make quality watches tick July 26th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project