Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Metal-silicone microstructures could enable new flexible optical and electrical devices: Laser-based method creates force-sensitive, flexible microstructures that conduct electricity

Using a one-step laser fabrication process, researchers created flexible hybrid microwires that conduct electricity. (a) An optical microscope image of the silver (black) and silicone (clear) microwires. (b) Scanning electron microscopy image of the same fabricated structure. Both scale bars are equal to 25 microns.
CREDIT
Mitsuhiro Terakawa, Keio University
Using a one-step laser fabrication process, researchers created flexible hybrid microwires that conduct electricity. (a) An optical microscope image of the silver (black) and silicone (clear) microwires. (b) Scanning electron microscopy image of the same fabricated structure. Both scale bars are equal to 25 microns. CREDIT Mitsuhiro Terakawa, Keio University

Abstract:
For the first time, researchers have used a single-step, laser-based method to produce small, precise hybrid microstructures of silver and flexible silicone. This innovative laser processing technology could one day enable smart factories that use one production line to mass-produce customized devices combining soft materials such as engineered tissue with hard materials that add functions such as glucose sensing.

Metal-silicone microstructures could enable new flexible optical and electrical devices: Laser-based method creates force-sensitive, flexible microstructures that conduct electricity

Washington, DC | Posted on November 1st, 2017

The metal component of the microstructures renders them electrically conductive while the elastic silicone contributes flexibility. This unique combination of properties makes the structures sensitive to mechanical force and could be useful for making new types of optical and electrical devices.

"These types of microstructures could possibly be used to measure very small movements or changes, such as a slight movement from an insect's body or the subtle expression produced by a human facial muscle," said research team leader Mitsuhiro Terakawa from Keio University, Japan. "This information could be used to create perfect computer-generated versions of these movements."

As detailed in the journal Optical Materials Express, from The Optical Society (OSA), the researchers produced wire-like structures of silver surrounded by a type of silicone known as polydimethylsiloxane (PDMS). The researchers used PDMS because it is flexible and biocompatible, meaning that it is safer to use on or in the body.

They fabricated the structures, which measure as little as 25 microns wide, by irradiating a mixture of PDMS and silver ions with extremely short laser pulses that last just femtoseconds. In one femtosecond, light travels only 300 nanometers, which is just slightly larger than the smallest bacteria.

"We believe we are the first group to use femtosecond laser pulses to create a hybrid material containing PDMS, which is very useful because of its elasticity," said Terakawa. "The work represents a step towards using a single, precision laser processing technology to fabricate biocompatible devices that combine hard and soft materials."

Turning two laser processes into one

The one-step fabrication method used to make the hybrid microstructures combines the light-based chemical reactions known as photopolymerization and photoreduction, both of which were induced using femtosecond laser pulses. Photopolymerization uses light to harden a polymer, and photoreduction uses light to form microstructures and nanostructures from metal ions.

The fabrication technique resulted from a collaboration between Terakawa's research group, which been studying two-photon photoreduction using soft materials, and a group at the German research organization Laser Zentrum Hannover, that has been advancing single-photon photopolymerization of PDMS.

To create the wire microstructures, the researchers irradiated the PDMS-silver mixture with light from femtosecond laser emitting at 522-nm, a wavelength that interacts efficiently with the material mixture. They also carefully selected silver ions that would combine well with PDMS.

The researchers found that just one laser scan formed wires that exhibit both the electrical conductivity of metal and the elasticity of a polymer. Additional scans could be used to produce thicker and more uniform structures. They also showed that the wire structures responded to mechanical force by blowing air over the structures to create a pressure of 3 kilopascal.

The researchers say that, in addition to making wires structures, the approach could be used to make tiny 3D metal-silicone structures. As a next step, they plan to study whether the fabricated wires maintain their structure and properties over time.

"Our work demonstrates that simultaneously inducing photoreduction and photopolymerization is a promising method for fabricating elastic and electrically conductive microstructures," said Terakawa. "This is one step toward our long-term goal of developing a smart factory for fabricating many human-compatible devices in one production line, whether the materials are soft or hard."

####

About The Optical Society
Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

About Optical Materials Express

Optical Materials Express (OMEx) is an open-access journal focusing on the synthesis, processing and characterization of materials for applications in optics and photonics. OMEx, which launched in April 2011, primarily emphasizes advances in novel optical materials, their properties, modeling, synthesis and fabrication techniques; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The editor-in-chief for OMEx is Alexandra Boltasseva from Purdue University. For more information, visit: OSA Publishing.

For more information, please click here

Contacts:
Joshua Miller

202-416-1435

Rebecca B. Andersen
The Optical Society

1 202.416.1443

Copyright © The Optical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: Y. Nakajima, K. Obata, M. Machida, A. Hohnholz, J. Koch, O. Suttmann, M. Terakawa, "Femtosecond-laser-based fabrication of metal/PDMS composite microstructures for mechanical force sensing," Opt. Mater. Express Vol. 7, Issue 11, 4203-4213 (2017).:

Related News Press

News and information

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Flexible Electronics

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Hardware

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Building nanomaterials for next-generation computing: Scientists recently developed a blueprint to fabricate new nanoheterostructures using 2D materials June 1st, 2018

Novel method to fabricate nanoribbons from speeding nano droplets May 29th, 2018

Switching with molecules: Molecular switch will facilitate the development of pioneering electro-optical devices May 25th, 2018

Possible Futures

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Optical computing/Photonic computing

Kavli Lectures: New vision of nanomaterial synthesis and light-fueled space travel August 8th, 2018

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

SUNY Poly-Led AIM Photonics and Partners Attend SEMICON West 2018 to Showcase High-Tech Advances, Collaboration, and Future R&D Opportunities: New York’s Tech Valley Makes a Major Showing in Silicon Valley July 3rd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Discoveries

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Materials/Metamaterials

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Flipping the switch on supramolecular electronics August 14th, 2018

Biomimetic micro/nanoscale fiber reinforced composites August 10th, 2018

Yale-NUS scientist and collaborators solve open theoretical problem on electron interactions August 10th, 2018

Announcements

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Photonics/Optics/Lasers

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Optical fibers that can 'feel' the materials around them August 7th, 2018

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

Future electronic components to be printed like newspapers July 20th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project