Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Metal-silicone microstructures could enable new flexible optical and electrical devices: Laser-based method creates force-sensitive, flexible microstructures that conduct electricity

Using a one-step laser fabrication process, researchers created flexible hybrid microwires that conduct electricity. (a) An optical microscope image of the silver (black) and silicone (clear) microwires. (b) Scanning electron microscopy image of the same fabricated structure. Both scale bars are equal to 25 microns.
CREDIT
Mitsuhiro Terakawa, Keio University
Using a one-step laser fabrication process, researchers created flexible hybrid microwires that conduct electricity. (a) An optical microscope image of the silver (black) and silicone (clear) microwires. (b) Scanning electron microscopy image of the same fabricated structure. Both scale bars are equal to 25 microns. CREDIT Mitsuhiro Terakawa, Keio University

Abstract:
For the first time, researchers have used a single-step, laser-based method to produce small, precise hybrid microstructures of silver and flexible silicone. This innovative laser processing technology could one day enable smart factories that use one production line to mass-produce customized devices combining soft materials such as engineered tissue with hard materials that add functions such as glucose sensing.

Metal-silicone microstructures could enable new flexible optical and electrical devices: Laser-based method creates force-sensitive, flexible microstructures that conduct electricity

Washington, DC | Posted on November 1st, 2017

The metal component of the microstructures renders them electrically conductive while the elastic silicone contributes flexibility. This unique combination of properties makes the structures sensitive to mechanical force and could be useful for making new types of optical and electrical devices.

"These types of microstructures could possibly be used to measure very small movements or changes, such as a slight movement from an insect's body or the subtle expression produced by a human facial muscle," said research team leader Mitsuhiro Terakawa from Keio University, Japan. "This information could be used to create perfect computer-generated versions of these movements."

As detailed in the journal Optical Materials Express, from The Optical Society (OSA), the researchers produced wire-like structures of silver surrounded by a type of silicone known as polydimethylsiloxane (PDMS). The researchers used PDMS because it is flexible and biocompatible, meaning that it is safer to use on or in the body.

They fabricated the structures, which measure as little as 25 microns wide, by irradiating a mixture of PDMS and silver ions with extremely short laser pulses that last just femtoseconds. In one femtosecond, light travels only 300 nanometers, which is just slightly larger than the smallest bacteria.

"We believe we are the first group to use femtosecond laser pulses to create a hybrid material containing PDMS, which is very useful because of its elasticity," said Terakawa. "The work represents a step towards using a single, precision laser processing technology to fabricate biocompatible devices that combine hard and soft materials."

Turning two laser processes into one

The one-step fabrication method used to make the hybrid microstructures combines the light-based chemical reactions known as photopolymerization and photoreduction, both of which were induced using femtosecond laser pulses. Photopolymerization uses light to harden a polymer, and photoreduction uses light to form microstructures and nanostructures from metal ions.

The fabrication technique resulted from a collaboration between Terakawa's research group, which been studying two-photon photoreduction using soft materials, and a group at the German research organization Laser Zentrum Hannover, that has been advancing single-photon photopolymerization of PDMS.

To create the wire microstructures, the researchers irradiated the PDMS-silver mixture with light from femtosecond laser emitting at 522-nm, a wavelength that interacts efficiently with the material mixture. They also carefully selected silver ions that would combine well with PDMS.

The researchers found that just one laser scan formed wires that exhibit both the electrical conductivity of metal and the elasticity of a polymer. Additional scans could be used to produce thicker and more uniform structures. They also showed that the wire structures responded to mechanical force by blowing air over the structures to create a pressure of 3 kilopascal.

The researchers say that, in addition to making wires structures, the approach could be used to make tiny 3D metal-silicone structures. As a next step, they plan to study whether the fabricated wires maintain their structure and properties over time.

"Our work demonstrates that simultaneously inducing photoreduction and photopolymerization is a promising method for fabricating elastic and electrically conductive microstructures," said Terakawa. "This is one step toward our long-term goal of developing a smart factory for fabricating many human-compatible devices in one production line, whether the materials are soft or hard."

####

About The Optical Society
Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

About Optical Materials Express

Optical Materials Express (OMEx) is an open-access journal focusing on the synthesis, processing and characterization of materials for applications in optics and photonics. OMEx, which launched in April 2011, primarily emphasizes advances in novel optical materials, their properties, modeling, synthesis and fabrication techniques; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The editor-in-chief for OMEx is Alexandra Boltasseva from Purdue University. For more information, visit: OSA Publishing.

For more information, please click here

Contacts:
Joshua Miller

202-416-1435

Rebecca B. Andersen
The Optical Society

1 202.416.1443

Copyright © The Optical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: Y. Nakajima, K. Obata, M. Machida, A. Hohnholz, J. Koch, O. Suttmann, M. Terakawa, "Femtosecond-laser-based fabrication of metal/PDMS composite microstructures for mechanical force sensing," Opt. Mater. Express Vol. 7, Issue 11, 4203-4213 (2017).:

Related News Press

News and information

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

Bosch provides customized IoT and Industry 4.0 solutions: Bosch Mondeville and Bosch Connected Devices and Solutions collaborate to meet a wide variety of customer requirements November 16th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

Nanometrics Completes Acquisition of 4D Technology Corporation: The addition of Dynamic Interferometry® expands process control technology solutions November 16th, 2018

Hardware

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

All wired up: New molecular wires for single-molecule electronic devices August 31st, 2018

Flexible Electronics

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Amazingly 'green' synthesis method for high-tech dyes: Dyes that are also of great interest for organic electronics have recently been prepared and crystallised at TU Wien. All that is required is just water, albeit under highly unusual conditions. August 10th, 2018

Possible Futures

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optical computing/Photonic computing

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

AIM Photonics Members Meeting Provides Key Updates on the Initiative’s Progress: Day-Long Engagement in Syracuse, NY, Sees Strong Attendance and Interest from Industry, Government, and Academic Partners November 2nd, 2018

Rice U. scientists form flat tellurium: Two-dimensional element shows promise for solar cells and other optoelectronics October 26th, 2018

Leti and Taiwanese National Applied Research Laboratories Announce Collaboration for Microelectronics Innovation: Collaboration Will Facilitate Scientific and Technological Exchanges in Microelectronics, Sharing Platforms and Encouraging PhD Student Exchanges October 23rd, 2018

Discoveries

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Materials/Metamaterials

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

Announcements

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

Bosch provides customized IoT and Industry 4.0 solutions: Bosch Mondeville and Bosch Connected Devices and Solutions collaborate to meet a wide variety of customer requirements November 16th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

Nanometrics Completes Acquisition of 4D Technology Corporation: The addition of Dynamic Interferometry® expands process control technology solutions November 16th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Scientists produce 3D chemical maps of single bacteria: Researchers at NSLS-II used ultrabright x-rays to generate 3-D nanoscale maps of a single bacteria's chemical composition with unparalleled spatial resolution November 16th, 2018

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Photonics/Optics/Lasers

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

European Commission Project Creates Pilot Line for Companies to Develop Mid-Infrared Devices: Companies Can Submit Proposals for Possible Matching Funds To Help Develop Prototypes November 13th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

AIM Photonics Members Meeting Provides Key Updates on the Initiative’s Progress: Day-Long Engagement in Syracuse, NY, Sees Strong Attendance and Interest from Industry, Government, and Academic Partners November 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project