Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Silk could improve sensitivity, flexibility of wearable body sensors

Silk could soon be used to produce more sensitive and flexible body sensors like this one.
CREDIT
Yingying Zhang
Silk could soon be used to produce more sensitive and flexible body sensors like this one. CREDIT Yingying Zhang

Abstract:
Title
Processing of silkworm silk for applications in flexible electronics

Abstract
Silkworm silk, with five thousand years' usage history, is a popular natural material for clothes or wearing accessories. In this talk, I will present our work on exploring the application of silk in flexible electronics. The development of flexible electronics and equipment attracts significant interests in recent years. Low-dimensional carbon materials are one kind of ideal materials for flexible electronics. It is of great importance to explore low cost and scalable preparation approaches for high performance flexible carbon materials-based wearable electronics. We demonstrated that carbonized silk fabric with a plain-weave structure, based on its unique N-doped graphitic carbon nanostructure and the macroscale woven structure, could be worked as strain sensors with both of high sensitivity (gauge factor of 9.6 in the strain range of 0%-250% and 37.5 in the range of 250%-500%) and high tolerable strain (more than 500%). The as-obtained sensors have fast response (<30 ms) and high durability (>10,000 cycles). It was demonstrated that such strain sensors could be used for monitoring both of vigorous human motions (such as jumping, marching, jogging, bending and rotation of joints), subtle human motions (such as pulse, facial expression, respiration and phonation) and even sound, and further demonstrated the capture and reconstruction of human body movements with our sensors, showing their superior performance and tremendous potential applications in wearable electronics and intelligent robots. In addition, transparent electronics skins based on graphene, carbon nanotubes, and silk nanofibers will be demonstrated.

Silk could improve sensitivity, flexibility of wearable body sensors

Washington, DC | Posted on August 20th, 2017

From smart socks to workout clothes that measure exertion, wearable body sensors are becoming the latest "must-have" technology. Now scientists report they are on the cusp of using silk, one of the world's most coveted fabrics, to develop a more sensitive and flexible generation of these multi-purpose devices that monitor a slew of body functions in real time.

The researchers are presenting their work today at the 254th National Meeting & Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features nearly 9,400 presentations on a wide range of science topics.

"There is a whole world of possibilities for silk sensors at the moment. Silk is the ideal material for fabricating sensors that are worn on the body," Yingying Zhang, Ph.D., says. "One possibility we foresee is for them to be used as an integrated wireless system that would allow doctors to more easily monitor patients remotely so that they can respond to their medical needs more rapidly than ever before."

Body sensors, which are usually made with semiconductors, have shown great potential for monitoring human health. But they have limitations. For instance, strain sensors, which measure changes in force, cannot be highly sensitive and highly stretchable at the same time. Silk, a natural material that is stronger than steel and more flexible than nylon, could overcome these problems. The fiber is also lightweight and biocompatible. However, silk doesn't conduct electricity very well. To address this challenge, Zhang and colleagues at Tsinghua University in China sought to find a way to boost the conductivity of silk so it could be successfully used in body-sensing devices.

The researchers decided to try two different strategies. In one approach, they treated the silk in an inert gas environment with temperatures ranging from 1,112 degrees to 5,432 degrees Fahrenheit. As a result, the silk became infused with N-doped carbon with some graphitized particles, which is electrically conductive. Using this technique, the scientists have developed strain sensors, pressure sensors and a dual-mode sensor capable of measuring temperature and pressure simultaneously.

In the other approach, the team fed either graphene or carbon nanotubes to silkworms. Some of these nanoparticles were naturally incorporated into the silk produced by the worms. So far, this method hasn't produced electrically conductive fibers, but the researchers are still experimenting with this technique and are hopeful they can make it work.

Based on the preliminary results, Zhang wants to explore ways to create an integrated set of silk-based, self-sustaining sensors that would be powered by nano-generators. She also suggests that her team's silk sensors might be used to build more realistic robots that can sense touch, temperature or humidity and can even distinguish between different people's voices.

###

Zhang acknowledges funding from the National Natural Science Foundation of China and the Key Technologies Basic Research and Development Program.

####

About American Chemical Society
The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
ACS Press Center in D.C., Aug. 20-23
202-249-4007


Katie Cottingham, Ph.D.
301-775-8455 (Cell)

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

Robotics

Mode-Changing MEMS Accelerometer from STMicroelectronics Combines High Measurement Resolution and Ultra-Low Power for Industrial Applications November 7th, 2018

Tiny light detectors work like gecko ears October 30th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

New bio-inspired dynamic materials transform themselves: Highly dynamic synthetic superstructure provides new clues on brain, spinal cord injuries and neurological disease October 5th, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Wearable electronics

Eco-friendly waterproof polymer films synthesized using novel method October 31st, 2018

Flexible Electronics

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Possible Futures

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Arrowhead Pharmaceuticals Presents Late-Breaking Preliminary Clinical Data on ARO-HBV at Liver Meeting® 2018 November 9th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Chip Technology

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Ultrasensitive toxic gas detector October 31st, 2018

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer October 25th, 2018

TUBALL single wall carbon nanotubes: No ecotoxicity found, unlike other carbon nanotubes October 12th, 2018

EXPLORES NEXT-GEN GRAPHENE NANOTUBE PRODUCTS October 2nd, 2018

Sensors

European Commission Project Creates Pilot Line for Companies to Develop Mid-Infrared Devices: Companies Can Submit Proposals for Possible Matching Funds To Help Develop Prototypes November 13th, 2018

Mode-Changing MEMS Accelerometer from STMicroelectronics Combines High Measurement Resolution and Ultra-Low Power for Industrial Applications November 7th, 2018

Nanotech Artisans Sculpt with DNA November 5th, 2018

The materials engineers are developing environmentally friendly materials: The materials engineers are developing environmentally friendly materials for producing smart textiles November 2nd, 2018

Discoveries

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

Materials/Metamaterials

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

Eco-friendly waterproof polymer films synthesized using novel method October 31st, 2018

Announcements

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

Events/Classes

Arrowhead Pharmaceuticals Presents Late-Breaking Clinical Data on ARO-AAT at Liver Meeting® 2018 November 9th, 2018

Arrowhead Pharmaceuticals Presents Late-Breaking Preliminary Clinical Data on ARO-HBV at Liver Meeting® 2018 November 9th, 2018

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

AIM Photonics Members Meeting Provides Key Updates on the Initiative’s Progress: Day-Long Engagement in Syracuse, NY, Sees Strong Attendance and Interest from Industry, Government, and Academic Partners November 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project