Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > First Capacitive Transducer with 13nm Gap

Abstract:
Fabrication of sub-30nm gap for capacitive transducers seemed impossible, until recently. Researchers at UC Berkeley successfully demonstrated a 13nm-gap capacitive resonator, which will improve sensor and resonator performance by orders of magnitude.

First Capacitive Transducer with 13nm Gap

Berkeley, CA | Posted on July 27th, 2017

Capacitive-gap transduced resonators are well known to provide high on-chip quality factors (Q), with values reaching 150,000 at VHF and 40,000 at 3GHz. Q’s this high enable 0.1% bandwidth channel-select filters with low insertion loss and high rejection for ultra-low power transceivers. At HF (from 3-30MHz), capacitive-gap transduced resonators also post strong electromechanical coupling, as gauged by (Cx/Co), up to 30%, which outperforms all other technologies. However, application of these transducers as the main filters of the smartphone (with market value more than $10b) requires strong electromechanical coupling at gigahertz frequencies. To achieve such a high coupling, transducers need to have gap spacing as small as 20 nanometers or less.
Researchers at University of California Berkeley demonstrated electrode-to-resonator gaps as small as 13.2nm achieved on a 59.5-MHz capacitive-gap transduced disk resonator which enabled a measured electromechanical coupling strength Cx/Co greater than 1.62% at a bias voltage of only 5.5V, which exceeds that of any competing technology, macro or micro, capacitive or piezoelectric, at similar VHF frequencies, all while retaining an unloaded quality factor Q of 29,640. Several key discoveries contribute to this successful demonstration, which include a novel polysilicon etch recipe that enables considerably smoother etch sidewalls than previously achievable, allowing more uniform sidewall sacrificial layer deposition and preventing structure pull-in by removing disparities and their associated strong electric fields. The implementation of small gap has improved the electromechanical coupling by more than 10x compared to previous resonators and its figure-of-merit measured as kt
2Q=576.2 holds the world’s record. This combination of high Cx/Co and Q, which has long been a primary driver for RF MEMS research, stands to not only cut VHF low noise oscillator power consumption to sub-µW levels, but now creates opportunities to apply MEMS resonator technology to the highly profitable and lucrative RF filter market for smartphones.

####

For more information, please click here

Contacts:
Jalal Naghsh Nilchi
Phone: 510-918-4346
Fax:
E-mail:

Copyright © University of California Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Hardware

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Leti Will Present 11 Papers and Host More-than-Moore Technologies Workshop November 14th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

MEMS

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

Chip Technology

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

GLOBALFOUNDRIES Demonstrates Industry-Leading 112G Technology for Next-Generation Connectivity Solutions: High bandwidth, low power SerDes IP portfolio enables ‘connected intelligence’ in data centers and networking applications November 15th, 2017

Nanometrics Announces $50 Million Share Repurchase Program November 15th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project