Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A firefly's flash inspires new nanolaser light

The complex flashing patterns of fireflies (left) led KAUST researchers to develop anapole lasers that use interactions between energy-storing nanodisks (center) to generate high-speed pulses of light on microchips (right).

CREDIT
Reproduced with permission from ref 1. © 2017 Gongora et al.
The complex flashing patterns of fireflies (left) led KAUST researchers to develop anapole lasers that use interactions between energy-storing nanodisks (center) to generate high-speed pulses of light on microchips (right). CREDIT Reproduced with permission from ref 1. © 2017 Gongora et al.

Abstract:
A reinvented, low-cost laser source that stores light energy inside nanoscale disks could underpin the development of optically powered neurocomputers, reveals a simulation study led by KAUST researchers.

A firefly's flash inspires new nanolaser light

Thuwal, Saudi Arabi | Posted on July 18th, 2017

Photonic devices that use controlled laser pulses to manipulate data switches, biomedical implants and solar cells are sought-after because they are lightning quick compared to traditional electronics; however, current prototypes have not been commercialized because of the difficulty in making lasers small enough to fit onto computer circuit boards, while also retaining pulse-shaping capabilities.

"The challenge of reducing an optical source down to the nanoscale is that it starts to emit energy strongly in all directions," explained Andrea Fratalocchi, an Associate Professor of Electrical Engineering. "This makes it almost impossible to control."

A partnership with Yuri Kivshar's group at the Australian National University revealed paths to beat optical diffraction limits with unconventional anapole lasers. Being made from semiconductors shaped into precisely sized nanodisks, anapoles respond to light stimulation by producing electromagnetic waves that either radiate or rotate in donut-shaped toroid distributions.

At specific excitation frequencies, interference between the two fields produces a state--the anapole--which does not emit energy in any direction and traps light inside the nanodisk.

"You can think of this laser as an energy tank--once the laser is on, it stores light and doesn't let it go until you want to collect it," said Fratalocchi.

To unlock the potential of this new light source, the KAUST team simulated various engineering architectures using quantum-based algorithms.

These calculations, along with improved microchip integration and thousand-fold enhancements in coupling to optical routers, predict that anapole nanolasers can generate ultrafast light pulses that are uniquely suited for studying natural patterns of signaling and neural connections.

Fratalocchi notes that the nanolasers would appear invisible to an observer until perturbed by a nearby object. Consequently, arranging the cylindrical light sources into a loop could be used to produce a chain reaction of light emissions, tunable down to as small as femtosecond pulse times.

"It's really like a population of fireflies, where the individuals synchronize their emissions into beautiful patterns," he explained "When we place the nanolasers close together, we can get similar control over the pulses."

The team's models suggest that integrating different loops of anapole nanolasers may produce oscillating, dynamic patterns useful for reproducing brain-like activities, such as machine learning and memory retrieval at low cost because the platform needs only inexpensive silicon wafers to work.

####

About King Abdullah University of Science and Technology

For more information, please click here

Contacts:
Michelle D'Antoni

Copyright © King Abdullah University of Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Brain-Computer Interfaces

Developing nanoprobes to detect neurotransmitters in the brain: Researchers synthesize fluorescent molecularly imprinted polymer nanoparticles to sense small neurotransmitter molecules and understand how they govern brain activity March 3rd, 2023

Taking salt out of the water equation October 7th, 2022

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Memory Technology

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

TUS researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films: The proposed method produces wiring suitable for developing all-carbon devices, including flexible sensors and energy conversion and storage devices March 3rd, 2023

Optical computing/Photonic computing

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project