Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Biophysicists propose new approach for membrane protein crystallization

Membrane proteins in a cell membrane (1). The same proteins (2) embedded in nanodiscs and stabilized in a water solution by a specially engineered protein belt. A protein crystal (3). Molecular structure (4) obtained by X-ray crystallography. This structure can be used to discover new drugs or introduce beneficial mutations into the protein.
CREDIT
MIPT Press Office
Membrane proteins in a cell membrane (1). The same proteins (2) embedded in nanodiscs and stabilized in a water solution by a specially engineered protein belt. A protein crystal (3). Molecular structure (4) obtained by X-ray crystallography. This structure can be used to discover new drugs or introduce beneficial mutations into the protein. CREDIT MIPT Press Office

Abstract:
A team of scientists from the Laboratory for Advanced Studies of Membrane Proteins at MIPT, Research Center Jülich (Germany), and Institut de Biologie Structurale (France) have developed a new approach to membrane protein crystallization.

Biophysicists propose new approach for membrane protein crystallization

Moscow, Russia | Posted on March 8th, 2017

For the first time, the scientists showed that membrane proteins trapped in synthetic patches of cell membrane called "nanodiscs" can be transferred into the lipidic cubic phase and crystallized.

The study published in ACS Crystal Growth & Design will enable scientists to crystallize membrane proteins just after their functional studies in defined membrane environments, avoiding the often critical procedure of detergent solubilization, which frequently affects their functionality and structural integrity and makes the proteins noncrystallizable.

Membrane proteins are of great interest to both fundamental research and applied studies (e.g., drug development and optogenetics). They are responsible for many diverse processes in a living cell, controlling cell response to the environment and molecular transport across the cell membrane. They are highly important drug targets and their structures are of great interest to pharmacology. Knowledge of protein structures facilitates the development of new drugs and provides insights into fundamental biological processes. Unfortunately, solving membrane protein structures is a major challenge for structural biology: Out of 7,000 predicted human membrane proteins, structures are only known for a few dozen of them. Due to their amphipathic nature, membrane proteins must be extracted from the cell membrane and solubilized in an aqueous solution to enable biochemical studies and subsequent crystallization. Previously, scientists had to use "soapy" molecules known as detergents to stabilize membrane proteins in a solution. However, these molecules tend to compromize protein stability and functionality, often impairing biophysical and structural analyses.

One of the most outstanding achievements of recent membrane protein studies, was the invention of membrane-mimic nanodiscs for membrane protein handling. Nanodiscs are discoidal fragments of the cell membrane, surrounded by an engineered protein "belt" to stabilize them in a water solution. Interestingly, our body also uses similar particles, called lipoproteins, to transport "bundles" of lipids and cholesterol molecules through blood vessels. The notion of using particles of this kind in membrane biochemistry was originally proposed by Stephen Sligar in 2002. Since then, nanodiscs have found numerous applications in biochemical and biophysical studies of membrane proteins. Unlike detergents, nanodiscs provide a more native-like environment for membrane protein refolding and stabilization. Moreover, nanodisc diameter and lipid composition can be varied to mimic cell membrane of specific membrane proteins, making it possible to reconstitute large complexes of membrane proteins in their nearly native state.

Nanodiscs are also widely used to study the structure of membrane proteins using nuclear magnetic resonance (NMR), cryo-electron microscopy, atomic force microscopy, and other methods.

Direct use of membrane proteins embedded in nanodiscs for crystallization would be of great importance for structural biology, however, despite considerable efforts, researches were not yet able to demonstrate that this was possible. Finally, MIPT's scientists found a way to transfer membrane proteins embedded in nanodiscs directly to the lipid based crystallization matrix and grow membrane protein crystals suitable for high resolution X-ray diffraction studies. In the newly proposed approach, nanodiscs harboring membrane proteins "dissolve" in the crystallization matrix, after which crystallization is driven by the properties of the lipidic bilayer phase as a whole. The quality of the crystals obtained in this manner is on par with crystals grown using traditional protocols, but they have the added advantage of maintaining protein molecules in their functional state.

The study published in ASC Crystal Growth & Design was selected for the March issue cover.

"We hope that the method explored in the present work can be applied to the crystallization of membrane proteins in general. A combination of nanodisc-assisted stabilization of membrane proteins with state-of-the-art crystallization techniques could help scientists all over the world to better understand the structure and function of membrane proteins," commented Mikhail Nikolaev, the first author of the paper and a researcher at MIPT's Laboratory for Advanced Studies of Membrane Proteins.

###

The study was supported by the Ministry of Education and Science of the Russian Federation (RFMEFI58716X0026).

####

For more information, please click here

Contacts:
Asya Shepunova

7-916-813-0267

Copyright © Moscow Institute of Physics and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE

Related News Press

News and information

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Crystallography

How to trick electrons to see the hidden face of crystals: Researchers try a trick for complete 3D analysis of submicron crystals August 3rd, 2019

3-D-printed jars in ball-milling experiments June 29th, 2017

Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography March 17th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Self-driving microrobots December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Possible Futures

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Nanomedicine

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

Artificial cells act more like the real thing December 6th, 2019

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock December 5th, 2019

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock December 3rd, 2019

Discoveries

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

Growing nano-tailored surfaces using micellar brushes November 29th, 2019

Announcements

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Self-driving microrobots December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Nanobiotechnology

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

Artificial cells act more like the real thing December 6th, 2019

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock December 5th, 2019

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock December 3rd, 2019

Research partnerships

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

The Greenest Diet: Bacteria Switch to Eating Carbon Dioxide: Such bacteria may, in the future, contribute to new, carbon-efficient technologies November 27th, 2019

Theorem explains why quantities such as heat and power can fluctuate in microscopic system: Brazilian researchers participate in theoretical study that could have practical applications in nanoscale machine optimization November 26th, 2019

Research shows old newspapers can be used to grow carbon nanotubes: Newspapers provide a green, economical way to produce carbon nanotubes November 22nd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project