Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > GLOBALFOUNDRIES Expands to Meet Worldwide Customer Demand: Company invests for capacity growth in the United States, Germany, China and Singapore

Abstract:
GLOBALFOUNDRIES today announced plans to expand its global manufacturing footprint in response to growing customer demand for its comprehensive and differentiated technology portfolio. The company is investing in its existing leading-edge fabs in the United States and Germany, expanding its footprint in China with a fab in Chengdu, and adding capacity for mainstream technologies in Singapore.

GLOBALFOUNDRIES Expands to Meet Worldwide Customer Demand: Company invests for capacity growth in the United States, Germany, China and Singapore

Santa Clara, CA | Posted on February 10th, 2017

“We continue to invest in capacity and technology to meet the needs of our worldwide customer base,” said GF CEO Sanjay Jha. “We are seeing strong demand for both our mainstream and advanced technologies, from our world-class RF-SOI platform for connected devices to our FD-SOI and FinFET roadmap at the leading edge. These new investments will allow us to expand our existing fabs while growing our presence in China through a partnership in Chengdu.”

In the United States, GF plans to expand 14nm FinFET capacity by an additional 20 percent at its Fab 8 facility in New York, with the new production capabilities to come online in the beginning of 2018. This expansion builds on the approximately $13 billion invested in the United States over the last eight years, with an associated 9,000 direct jobs across four locations and 15,000 jobs within the regional ecosystem. New York will continue to be the center of leading-edge technology development for 7nm and extreme ultraviolet (EUV) lithography, with 7nm production planned for Q2 2018.

In Germany, GF plans to build up 22FDX® 22nm FD-SOI capacity at is Fab 1 facility in Dresden to meet demand for the Internet of Things (IoT), smartphone processors, automotive electronics, and other battery-powered wirelessly connected applications, growing the overall fab capacity by 40 percent by 2020. Dresden will continue to be the center for FDX technology development. GF engineers in Dresden are already developing the company’s next-generation 12FDXTM technology, with customer product tape-outs expected to begin in the middle of 2018.

In China, GF and the Chengdu municipality have formed a partnership to build a fab in Chengdu. The partners plan to establish a 300mm fab to support the growth of the Chinese semiconductor market and to meet accelerating global customer demand for 22FDX. The fab will begin production of mainstream process technologies in 2018 and then focus on manufacturing GF’s commercially available 22FDX process technology, with volume production expected to start in 2019.

In Singapore, GF will increase 40nm capacity at its 300mm fab by 35 percent, while also enabling more 180nm production on its 200mm manufacturing lines. The company will also add new capabilities to produce its industry-leading RF-SOI technology.

“GF has had a strong foundry relationship with Qualcomm Technologies for many years across a wide range of process nodes,” said Roawen Chen, senior vice president, QCT global operations, Qualcomm Technologies, Inc. “We are excited to see GF making these new investments in differentiated technology and expanding global capacity to support Qualcomm Technologies in delivering the next wave of innovation across a range of integrated circuits that support our business.”

“Collaborative foundry partnerships are critical for us to differentiate ourselves in the competitive market for mobile SoCs,” said Min Li, chief executive officer of Rockchip. “We are pleased to see GF bringing its innovative 22FDX technology to China and investing in the capacity necessary to support the country’s growing fabless semiconductor industry.”

“As our customers increasingly demand more from their mobile experiences, the need for a strong manufacturing partner is greater than ever,” said Joe Chen, co-chief operating officer of MediaTek. “We are thrilled to have a partner like GF that invests in the global capacity we need to deliver powerful and efficient mobile technologies for markets ranging from networking and connectivity to the Internet of Things.”

####

About GLOBALFOUNDRIES
GLOBALFOUNDRIES is a leading full-service semiconductor foundry providing a unique combination of design, development, and fabrication services to some of the world’s most inspired technology companies. With a global manufacturing footprint spanning three continents, GLOBALFOUNDRIES makes possible the technologies and systems that transform industries and give customers the power to shape their markets. GLOBALFOUNDRIES is owned by Mubadala Development Company.

For more information, please click here

Copyright © GLOBALFOUNDRIES

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Chip-based dispersion compensation for faster fibre internet: SUTD scientists developed a novel CMOS-compatible, slow-light-based transmission grating device for the dispersion compensation of high-speed data, significantly lowering data transmission errors and paving the way for June 30th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Internet-of-Things

New nanowire sensors are the next step in the Internet of Things January 6th, 2023

New chip ramps up AI computing efficiency August 19th, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Openings/New facilities/Groundbreaking/Expansion

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project