Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert

By embedding spinach leaves with carbon nanotubes, MIT engineers have transformed spinach plants into sensors that can detect explosives and wirelessly relay that information to a handheld device similar to a smartphone.

Illustration: Christine Daniloff/MIT
By embedding spinach leaves with carbon nanotubes, MIT engineers have transformed spinach plants into sensors that can detect explosives and wirelessly relay that information to a handheld device similar to a smartphone. Illustration: Christine Daniloff/MIT

Abstract:
Spinach is no longer just a superfood: By embedding leaves with carbon nanotubes, MIT engineers have transformed spinach plants into sensors that can detect explosives and wirelessly relay that information to a handheld device similar to a smartphone.

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert

Cambridge, MA | Posted on November 2nd, 2016

This is one of the first demonstrations of engineering electronic systems into plants, an approach that the researchers call "plant nanobionics."

"The goal of plant nanobionics is to introduce nanoparticles into the plant to give it non-native functions," says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT and the leader of the research team.

In this case, the plants were designed to detect chemical compounds known as nitroaromatics, which are often used in landmines and other explosives. When one of these chemicals is present in the groundwater sampled naturally by the plant, carbon nanotubes embedded in the plant leaves emit a fluorescent signal that can be read with an infrared camera. The camera can be attached to a small computer similar to a smartphone, which then sends an email to the user.

"This is a novel demonstration of how we have overcome the plant/human communication barrier," says Strano, who believes plant power could also be harnessed to warn of pollutants and environmental conditions such as drought.

Strano is the senior author of a paper describing the nanobionic plants in the Oct. 31 issue of Nature Materials. The paper's lead author is Min Hao Wong, an MIT graduate student who has started a company called Plantea to further develop this technology.

Environmental monitoring

Two years ago, in the first demonstration of plant nanobionics, Strano and former MIT postdoc Juan Pablo Giraldo used nanoparticles to enhance plants' photosynthesis ability and to turn them into sensors for nitric oxide, a pollutant produced by combustion.

Plants are ideally suited for monitoring the environment because they already take in a lot of information from their surroundings, Strano says.

"Plants are very good analytical chemists," he says. "They have an extensive root network in the soil, are constantly sampling groundwater, and have a way to self-power the transport of that water up into the leaves."

Strano's lab has previously developed carbon nanotubes that can be used as sensors to detect a wide range of molecules, including hydrogen peroxide, the explosive TNT, and the nerve gas sarin. When the target molecule binds to a polymer wrapped around the nanotube, it alters the tube's fluorescence.

In the new study, the researchers embedded sensors for nitroaromatic compounds into the leaves of spinach plants. Using a technique called vascular infusion, which involves applying a solution of nanoparticles to the underside of the leaf, they placed the sensors into a leaf layer known as the mesophyll, which is where most photosynthesis takes place.

They also embedded carbon nanotubes that emit a constant fluorescent signal that serves as a reference. This allows the researchers to compare the two fluorescent signals, making it easier to determine if the explosive sensor has detected anything. If there are any explosive molecules in the groundwater, it takes about 10 minutes for the plant to draw them up into the leaves, where they encounter the detector.

To read the signal, the researchers shine a laser onto the leaf, prompting the nanotubes in the leaf to emit near-infrared fluorescent light. This can be detected with a small infrared camera connected to a Raspberry Pi, a $35 credit-card-sized computer similar to the computer inside a smartphone. The signal could also be detected with a smartphone by removing the infrared filter that most camera phones have, the researchers say.

"This setup could be replaced by a cell phone and the right kind of camera," Strano says. "It's just the infrared filter that would stop you from using your cell phone."

Using this setup, the researchers can pick up a signal from about 1 meter away from the plant, and they are now working on increasing that distance.

"A wealth of information"

In the 2014 plant nanobionics study, Strano's lab worked with a common laboratory plant known as Arabidopsis thaliana. However, the researchers wanted to use common spinach plants for the latest study, to demonstrate the versatility of this technique. "You can apply these techniques with any living plant," Strano says.

So far, the researchers have also engineered spinach plants that can detect dopamine, which influences plant root growth, and they are now working on additional sensors, including some that track the chemicals plants use to convey information within their own tissues.

"Plants are very environmentally responsive," Strano says. "They know that there is going to be a drought long before we do. They can detect small changes in the properties of soil and water potential. If we tap into those chemical signaling pathways, there is a wealth of information to access."

These sensors could also help botanists learn more about the inner workings of plants, monitor plant health, and maximize the yield of rare compounds synthesized by plants such as the Madagascar periwinkle, which produces drugs used to treat cancer.

"These sensors give real-time information from the plant. It is almost like having the plant talk to us about the environment they are in," Wong says. "In the case of precision agriculture, having such information can directly affect yield and margins."

####

For more information, please click here

Contacts:
Sarah McDonnell

617-827-7637

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Drilling speed increased by 20% yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Chirality in 'real-time' January 14th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Media invited to open meeting on the future of quantum technology held at RIT Jan. 23-25: Leaders from NASA, NSF, NIST and Sandia National Laboratory to attend January 11th, 2019

Videos/Movies

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

The National Graphene Association Is Excited To Announce A New Affiliate Partnership With Graphene Engineering Innovation Centre (GEIC) November 7th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

A New Way to Measure Nearly Nothing: NIST prototype design uses ultracold trapped atoms to measure pressure October 22nd, 2018

Possible Futures

Chirality in 'real-time' January 14th, 2019

Media invited to open meeting on the future of quantum technology held at RIT Jan. 23-25: Leaders from NASA, NSF, NIST and Sandia National Laboratory to attend January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Nanomedicine

Chirality in 'real-time' January 14th, 2019

Ultra-sensitive sensor with gold nanoparticle array January 9th, 2019

Arrowhead Pharmaceuticals Begins Dosing in Phase 1 Study of ARO-ANG3 for Treatment of Dyslipidemias and Metabolic Diseases January 7th, 2019

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-APOC3 for Treatment of Hypertriglyceridemia January 7th, 2019

Sensors

Ultra-sensitive sensor with gold nanoparticle array January 9th, 2019

Study on low noise, high-performance transistors may bring innovations in electronics December 28th, 2018

Emerging trends in advanced nano-materials based electrochemical geno-sensors December 28th, 2018

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme QMiCS December 13th, 2018

Discoveries

Chirality in 'real-time' January 14th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Announcements

Drilling speed increased by 20% yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Chirality in 'real-time' January 14th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

2D materials may enable electric vehicles to get 500 miles on a single charge January 11th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Homeland Security

A bullet-proof heating pad November 2nd, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Military

Cartilage could be key to safe 'structural batteries' January 11th, 2019

DNA design that anyone can do: Computer program can translate a free-form 2-D drawing into a DNA structure January 4th, 2019

E-bandage generates electricity, speeds wound healing in rats December 28th, 2018

Bending light around tight corners without backscattering losses: New photonic crystal waveguide based on topological insulators paves the way to build futuristic light-based computers November 19th, 2018

Nanobiotechnology

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Ultra-sensitive sensor with gold nanoparticle array January 9th, 2019

Arrowhead Pharmaceuticals Begins Dosing in Phase 1 Study of ARO-ANG3 for Treatment of Dyslipidemias and Metabolic Diseases January 7th, 2019

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-APOC3 for Treatment of Hypertriglyceridemia January 7th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project