Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NRL reveals novel uniform coating process of p-ALD

Image shows high magnification bright field transmission electron microscopy (TEM) image showing obvious delineation of alumina film and surface of particle. In this work, performed by NRL researchers, the growth per cycle (GPC) during atomic layer deposition is compared for different batches of powder with average particle sizes ranging from nanometer (nm) to micrometer (μm). Samples prepared after depositing thin alumina films (from 10 to15 nm) on tungsten powders using particle atomic layer deposition (p-ALD) were investigated with x-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopy (SEM), and TEM.
CREDIT: US Naval Research Laboratory
Image shows high magnification bright field transmission electron microscopy (TEM) image showing obvious delineation of alumina film and surface of particle. In this work, performed by NRL researchers, the growth per cycle (GPC) during atomic layer deposition is compared for different batches of powder with average particle sizes ranging from nanometer (nm) to micrometer (μm). Samples prepared after depositing thin alumina films (from 10 to15 nm) on tungsten powders using particle atomic layer deposition (p-ALD) were investigated with x-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopy (SEM), and TEM.

CREDIT: US Naval Research Laboratory

Abstract:
Scientists at the U.S. Naval Research Laboratory (NRL) have devised a clever combination of materials -- when used during the thin-film growth process -- to reveal that particle atomic layer deposition, or p-ALD, deposits a uniform nanometer-thick shell on core particles regardless of core size, a discovery having significant impacts for many applications since most large scale powder production techniques form powder batches that are made up of a range of particles sizes.

NRL reveals novel uniform coating process of p-ALD

Washington, DC | Posted on April 21st, 2016

"Particle atomic layer deposition is highlighted as a technology that can create new and exciting designer core/shell particles to be used as building blocks for the next generation of complex multifunctional nanocomposites," said Dr. Boris Feygelson, research engineer, NRL Electronics Science and Technology Division. "Our work is important because shell-thickness is most often a crucial parameter in applications where core-shell materials can be used to enhance performance of future materials."

Atomic layer deposition is a layer-by-layer chemical vapor deposition-based thin-film growth technique used extensively in the electronics industry to deposit nanometer-thick films of dielectric materials on devices. Combined with other deposition and shadowing masking techniques, ALD is an integral part of electronic chip and device manufacturing. The same gas-phase process can be applied in a rotary or fluidizing powder bed reactor to grow nanometer-thick films that are highly conformal and uniformly thick on individual particles.

Previous research on p-ALD, patented by ALD NanoSolutions, Inc., has shown that growth of each layer during the deposition process varies with particle size, with the underlying assumption that larger particles will always have less growth. To observe this growth phenomenon, the NRL team grew alumina on nano- and micron-sized particles of tungsten and measured the shell thickness in a transmission electron microscope. Because of the huge mass/density difference of the two materials, this pairing provides maximum contrast in the electron microscope and delineation was easily distinguishable between the particle core and shell.

In their research, the scientists created core and shell powders consisting of a tungsten particle core and thin alumina shell that were then synthesized using atomic layer deposition in a rotary reactor. Standard atomic layer deposition of trimethylaluminum and water was performed on varying batches of powder with different average particle sizes.

"Amazingly, we found that the growth per cycle of the alumina film on an individual particle in a batch was shown to be independent of the size of an individual particle, and therefore, a powder batch -- which consists of particles sizes spanning orders of magnitude -- has constant shell thicknesses on all particles. This result upsets the current understanding of ALD on particles," said Dr. Kedar Manandhar, ASEE postdoc, NRL Electronics Science and Technology Division and leading author of the research paper.

The work, published recently in the Journal of Vacuum Science and Technology A, suggests that water, a reactant in the ALD process, is reason for the same rate of growth on different particles. This uniformity of thickness on different particle sizes in a particular batch is determined to be due to the difficulty of removing residual water molecules from the powder during the purging cycle of the atomic layer deposition (ALD) process. "Water is very sticky and it is very difficult to remove the last mono-layer from surfaces," Feygelson says. "And when you have a tumbling bed of powders, the water sticks around between the particles and results in consistent shell growth in the tumbling powder.

Applications for this research demonstrate implications for use in materials like abrasion resistant paints, high surface area catalyst, electron tunneling barriers, ultra-violet adsorption or capture in sunscreens or solar cells and even beyond when core-shell nanoparticles are used as buildings blocks for making new artificial nanostructured solids with unprecedented properties.

###

This research is a cross-disciplinary effort at NRL between the Materials Science and Technology Division and Electronics Science and Technology Division. The authors of the paper gratefully acknowledge Drs. Dev Palmer (Defense Advanced Research Projects Agency), Baruch Levush (NRL), and Fritz Kub (NRL).

####

For more information, please click here

Contacts:
Daniel Parry

202-767-2326

Copyright © Naval Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Laboratories

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Rutgers researchers develop method with single-molecule precision to engineer enzyme ‘stickiness’: The method aids in optimizing enzymes or proteins ‘stickiness’ for diverse biotechnological applications October 14th, 2022

Chemistry

New $1.25 million research project will map materials at the nanoscale: The work can lead to new catalysts and other compounds that could be applicable in a range of areas including quantum science, renewable energy, life sciences and sustainability October 28th, 2022

Liquid crystal templated chiral nanomaterials October 14th, 2022

Scientists count electric charges in a single catalyst nanoparticle down to the electron: Tenfold improvement in the sensitivity of electron holography reveals the net charge in a single platinum nanoparticle with a precision of just one electron, providing fundamental informatio October 14th, 2022

Powders

Graphene nanotubes offer an efficient replacement for carbon additives in conductive electrical heating paints November 3rd, 2021

Ceramics and Nanoceramic Powders Market To 2015: Acute Market Reports July 20th, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Reducing energy usage with nano-coatings April 9th, 2015

Govt.-Legislation/Regulation/Funding/Policy

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Materials/Metamaterials

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Semi-nonlinear etchless lithium niobate waveguide with bound states in the continuum November 4th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Tools

Quantum-Si’s next-generation single-molecule protein sequencing technology published in Science, signaling new era of life science and biomedical research: Semiconductor chip and Time Domain Sequencing™ technology will advance drug discovery and diagnostics, enabling people to li October 14th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

An alternative to MINFLUX that enables nanometre resolution in a confocal microscope August 26th, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Military

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Energy

Predicting the device performance of the perovskite solar cells from the experimental parameters through machine learning of existing experimental results November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

Advances in thermoelectric power generation possible with various ‘metal chalcogenide’ materials, recent review shows November 4th, 2022

Water

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Scientists offer solutions for risky tap water June 17th, 2022

UBCO researchers change the game when it comes to activity tracking: Flexible, highly sensitive motion device created by extrusion printing June 17th, 2022

Personal Care/Cosmetics

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Graphene finds new application as anti-static hair dye: New formula works as well as commercial permanent dyes without chemically altering hairs March 22nd, 2018

Programmable materials find strength in molecular repetition May 23rd, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

Solar/Photovoltaic

Predicting the device performance of the perovskite solar cells from the experimental parameters through machine learning of existing experimental results November 18th, 2022

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

Scientists have proposed a new material for perovskite solar cells: It is cheaper its analogues, easier to manufacture and to modify October 28th, 2022

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project