Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny octopods catalyze bright ideas: Rice-led study shows plasmonic sensors and catalysts need not be mutually exclusive

A scanning electron transmission microscope image shows an octopod, left, created at Rice University that has both plasmonic and catalytic abilities. At right is an illustration of the octopod, which has a gold core and a gold-palladium alloy surface. The scale bar is 50 nanometers.
CREDIT: Ringe Group/Rice University
A scanning electron transmission microscope image shows an octopod, left, created at Rice University that has both plasmonic and catalytic abilities. At right is an illustration of the octopod, which has a gold core and a gold-palladium alloy surface. The scale bar is 50 nanometers.

CREDIT: Ringe Group/Rice University

Abstract:
Nanoscale octopods that do double duty as catalysts and plasmonic sensors are lighting a path toward more efficient industrial processes, according to a Rice University scientist.


BR>Three-dimensional images of an octopod nanoparticle of gold and palladium were captured at Rice University's electron microscopy center and animated. The research proved that plasmonic nanoparticles can support catalysts without losing their beneficial optical properties. Such alloys could make industrial processes more efficient or enable sun-driven chemical reactions.
BR>Credit: Ringe Group/Rice University

Tiny octopods catalyze bright ideas: Rice-led study shows plasmonic sensors and catalysts need not be mutually exclusive

Houston, TX | Posted on November 30th, 2015

Catalysts are substances that speed up chemical reactions and are essential to many industries, including petroleum, food processing and pharmaceuticals. Common catalysts include palladium and platinum, both found in cars' catalytic converters. Plasmons are waves of electrons that oscillate in particles, usually metallic, when excited by light. Plasmonic metals like gold and silver can be used as sensors in biological applications and for chemical detection, among others.

Plasmonic materials are not the best catalysts, and catalysts are typically very poor for plasmonics. But combining them in the right way shows promise for industrial and scientific applications, said Emilie Ringe, a Rice assistant professor of materials science and nanoengineering and of chemistry who led the study that appears in Scientific Reports.

"Plasmonic particles are magnets for light," said Ringe, who worked on the project with colleagues in the U.S., the United Kingdom and Germany. "They couple with light and create big electric fields that can drive chemical processes. By combining these electric fields with a catalytic surface, we could further push chemical reactions. That's why we're studying how palladium and gold can be incorporated together."

The researchers created eight-armed specks of gold and coated them with a gold-palladium alloy. The octopods proved to be efficient catalysts and sensors.

"If you simply mix gold and palladium, you may end up with a bad plasmonic material and a pretty bad catalyst, because palladium does not attract light like gold does," Ringe said. "But our particles have gold cores with palladium at the tips, so they retain their plasmonic properties and the surfaces are catalytic."

Just as important, Ringe said, the team established characterization techniques that will allow scientists to tune application-specific alloys that report on their catalytic activity in real time.

The researchers analyzed octopods with a variety of instruments, including Rice's new Titan Themis microscope, one of the most powerful electron microscopes in the nation. "We confirmed that even though we put palladium on a particle, it's still capable of doing everything that a similar gold shape would do. That's really a big deal," she said.

"If you shine a light on these nanoparticles, it creates strong electric fields. Those fields enhance the catalysis, but they also report on the catalysis and the molecules present at the surface of the particles," Ringe said.

The researchers used electron energy loss spectroscopy, cathodoluminescence and energy dispersive X-ray spectroscopy to make 3-D maps of the electric fields produced by exciting the plasmons. They found that strong fields were produced at the palladium-rich tips, where plasmons were the least likely to be excited.

Ringe expects further research will produce multifunctional nanoparticles in a variety of shapes that can be greatly refined for applications. Her own Rice lab is working on a metal catalyst to turn inert petroleum derivatives into backbone molecules for novel drugs.

###

Co-authors of the paper are Christopher DeSantis and Sara Skrabalak of Indiana University; Sean Collins and Paul Midgley of the University of Cambridge, United Kingdom; and Martial Duchamp and Rafal Dunin-Borkowski of the Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and the Peter Grünberg Institute, Jülich, Germany.

The research was supported by the European Union under the Seventh Framework Program, the European Research Council, the Royal Society, Trinity Hall Cambridge, a University of Cambridge Gates Fellowship and the National Science Foundation.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth

713-348-6327

Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the paper at:

Emilie Ringe Group:

Rice Department of Material Science and NanoEngineering:

Related News Press

News and information

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Researchers develop experimental rapid COVID-19 test using nanoparticle technique: Advanced nanotechnology provides 'naked eye' visual detection of virus in 10 minutes May 29th, 2020

Imaging

Raman, UV-visible-NIR, Photoluminescence and Polarization Spectroscopy of Microscopic Samples May 29th, 2020

Eavesdropping on single molecules with light by replaying the chatter May 15th, 2020

Engineers and scientists develop mobile technology for eye examinations: Novel photonic integrated technology will bring optical coherence tomography from stationary clinical use to mobile use May 7th, 2020

Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter May 1st, 2020

Argonne scientists fashion new class of X-ray detector: New perovskite-based detectors can sense X-rays over a broad energy range. April 24th, 2020

Chemistry

MSU scientists solve half-century-old magnesium dimer mystery May 22nd, 2020

Maryland engineers open door to big new library of tiny nanoparticles: A new study expands the landscape of nanomaterials -- and what we can do with them April 24th, 2020

Two is better than one: Scientists fit two co-catalysts on one nanosheet for better water purification April 16th, 2020

Videos/Movies

Fueling the World Sustainably: Synthesizing Ammonia using Less Energy April 26th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

Electrons break rotational symmetry in exotic low-temp superconductor: Scientists previously observed this peculiar behavior in other materials whose ability to conduct electricity without energy loss cannot be explained by standard theoretical frameworks May 19th, 2020

Nanomedicine

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

Researchers develop experimental rapid COVID-19 test using nanoparticle technique: Advanced nanotechnology provides 'naked eye' visual detection of virus in 10 minutes May 29th, 2020

2D sandwich sees molecules with clarity: Rice University engineers adapt 2D ‘sandwich’ for surface-enhanced Raman spectroscopy May 15th, 2020

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of 'twistronics' based on tunable 2D materials May 12th, 2020

Sensors

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Making quantum 'waves' in ultrathin materials: Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale May 15th, 2020

Twisting 2D materials uncovers their superpowers: Researchers have developed a completely new method for twisting atomically thin materials, paving the way for applications of 'twistronics' based on tunable 2D materials May 12th, 2020

MOF material offers optical sensing of NO2 pollutant for air quality measurements April 30th, 2020

Discoveries

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Materials/Metamaterials

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Researchers review advances in 3D printing of high-entropy alloys: SUTD collaborates with universities in Singapore and China to shine light on HEA manufacturing processes and inspire further research in this emerging field May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Announcements

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Researchers develop experimental rapid COVID-19 test using nanoparticle technique: Advanced nanotechnology provides 'naked eye' visual detection of virus in 10 minutes May 29th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Tools

Raman, UV-visible-NIR, Photoluminescence and Polarization Spectroscopy of Microscopic Samples May 29th, 2020

Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter May 1st, 2020

Argonne scientists fashion new class of X-ray detector: New perovskite-based detectors can sense X-rays over a broad energy range. April 24th, 2020

New boron material of high hardness created by plasma chemical vapor deposition: The goal is material that approaches a diamond in hardness and can survive extreme pressure, temperature and corrosive environments April 17th, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Electrons break rotational symmetry in exotic low-temp superconductor: Scientists previously observed this peculiar behavior in other materials whose ability to conduct electricity without energy loss cannot be explained by standard theoretical frameworks May 19th, 2020

2D sandwich sees molecules with clarity: Rice University engineers adapt 2D ‘sandwich’ for surface-enhanced Raman spectroscopy May 15th, 2020

Water-splitting module a source of perpetual energy: ‘Artificial leaf’ concept inspires Rice University research into solar-powered fuel production May 4th, 2020

Research partnerships

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

Scientists break the link between a quantum material's spin and orbital states: The advance opens a path toward a new generation of logic and memory devices based on orbitronics that could be 10,000 times faster than today's May 15th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project