Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Characterizing the forces that hold everything together: UMass Amherst physicists offer new open source calculations for molecular interactions

UMass Amherst physicists, with others, provide a new software tool and database to help materials designers with the difficult calculations needed to predict the magnitude of van der Waals interactions between anisotropic or directionally dependent bodies such as those illustrated, with long-range torques. Though small, these forces are dominant on the nanoscale.
CREDIT: UMass Amherst
UMass Amherst physicists, with others, provide a new software tool and database to help materials designers with the difficult calculations needed to predict the magnitude of van der Waals interactions between anisotropic or directionally dependent bodies such as those illustrated, with long-range torques. Though small, these forces are dominant on the nanoscale.

CREDIT: UMass Amherst

Abstract:
As electronic, medical and molecular-level biological devices grow smaller and smaller, approaching the nanometer scale, the chemical engineers and materials scientists devising them often struggle to predict the magnitude of molecular interactions on that scale and whether new combinations of materials will assemble and function as designed.

Characterizing the forces that hold everything together: UMass Amherst physicists offer new open source calculations for molecular interactions

Amherst. MA | Posted on September 23rd, 2015

This is because the physics of interactions at these scales is difficult, say physicists at the University of Massachusetts Amherst, who with colleagues elsewhere this week unveil a project known as Gecko Hamaker, a new computational and modeling software tool plus an open science database to aid those who design nano-scale materials.

In the cover story in today's issue of Langmuir, Adrian Parsegian, Gluckstern Chair in physics, physics doctoral student Jaime Hopkins and adjunct professor Rudolf Podgornik on the UMass Amherst team report calculations of van der Waals interactions between DNA, carbon nanotubes, proteins and various inorganic materials, with colleagues at Case Western Reserve University and the University of Missouri who make up the Gecko-Hamaker project team.

To oversimplify, van der Waals forces are the intermolecular attractions between atoms, molecules, surfaces, that control interactions at the molecular level. The Gecko Hamaker project makes available to its online users a large variety of calculations for nanometer-level interactions that help to predict molecular organization and evaluate whether new combinations of materials will actually stick together and work.

In this work supported by the U.S. Department of Energy, Parsegian and colleagues say their open-science software opens a whole range of insights into nano-scale interactions that materials scientists haven't been able to access before.

Parsegian explains, "Van der Waals forces are small, but dominant on the nanoscale. We have created a bridge between deep physics and the world of new materials. All miniaturization, all micro- and nano-designs are governed by these forces and interactions, as is behavior of biological macromolecules such as proteins and lipid membranes. These relationships define the stability of materials."

He adds, "People can try putting all kinds of new materials together. This new database and our calculations are going to be important to many different kinds of scientists interested in colloids, biomolecular engineering, those assembling molecular aggregates and working with virus-like nanoparticles, and to people working with membrane stability and stacking. It will be helpful in a broad range of other applications."

Podgornik adds, "They need to know whether different molecules will stick together or not. It's a complicated problem, so they try various tricks and different approaches." One important contribution of Gecko Hamaker is that it includes experimental observations seemingly unrelated to the problem of interactions that help to evaluate the magnitude of van der Waals forces.

Podgornik explains, "Our work is fundamentally different from other approaches, as we don't talk only about forces but also about torques. Our methodology allows us to address orientation, which is more difficult than simply describing van der Waals forces, because you have to add a lot more details to the calculations. It takes much more effort on the fundamental level to add in the orientational degrees of freedom."

He points out that their methods also allow Gecko Hamaker to address non-isotropic, or non-spherical and other complex molecular shapes. "Many molecules don't look like spheres, they look like rods. Certainly in that case, knowing only the forces isn't enough. You must calculate how torque works on orientation. We bring the deeper theory and microscopic understanding to the problem. Van der Waals interactions are known in simple cases, but we've taken on the most difficult ones."

Hopkins, the doctoral student, notes that as an open-science product, Gecko Hamaker's calculations and data are transparent to users, and user feedback improves its quality and ease of use, while also verifying the reproducibility of the science.

####

For more information, please click here

Contacts:
Janet Lathrop

413-545-0444

Copyright © University of Massachusetts at Amherst

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Arrowhead Pharmaceuticals to Webcast Fiscal 2019 Year End Results November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Arrowhead and Collaborator Janssen Present Phase 2 Clinical Data for Investigational Hepatitis B Regimens at The Liver Meeting® 2019 November 8th, 2019

Go with the flow: Scientists design new grid batteries for renewable energy: New blueprint for affordable, sustainable 'flow batteries' developed at Berkeley Lab could accelerate an electrical grid powered by the sun and wind November 8th, 2019

Chemistry

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Sponge-like 2D material with interesting electrical conductivity and magnetic properties: Researchers synthesize a new 2D Metal Organic Framework with an ever-growing list of possible applications October 31st, 2019

Visible light and nanoparticle catalysts produce desirable bioactive molecules: Simple photochemical method takes advantage of quantum mechanics October 31st, 2019

Bio-inspired nano-catalyst guides chiral reactions October 25th, 2019

Physics

Cage molecules act as molecular sieves for hydrogen isotope separation November 1st, 2019

Software

DNA design that anyone can do: Computer program can translate a free-form 2-D drawing into a DNA structure January 4th, 2019

Park Systems Announces Grand Opening Ceremony for Their New Office in Beijing China November 19th, 2018

Leti Middleware Will Be Core of Fog Platform for Decentralized Cloud-to-Edge AI: DECENTER Project to Integrate IoT, AI, the Cloud, Edge, Fog Computing and Smart Contracts Tied Together with Secure Blockchain in ‘New Ecosystem’ for On-Demand Edge Computing October 26th, 2018

AIM Photonics is Unveiling Support for Datacom and Telecom Optical Bands with its New Silicon Photonics Process Design Kit (PDK): New Analog Photonics and SUNY PDK Enables Partnering Companies to Gain World-Class Technological Capabilities in O+C+L optical bands October 5th, 2018

Molecular Nanotechnology

DNA origami to scale-up molecular motors June 13th, 2019

Big energy savings for tiny machines May 24th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

How perovskite in solar cells recrystallizes and why modified carbon nanotubes can help overcome the reproducibility problem by making use of this October 18th, 2019

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM’19 October 14th, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Discoveries

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Thorium superconductivity: Scientists discover a new high-temperature superconductor November 8th, 2019

Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019

Materials/Metamaterials

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Disordered proteins become stable, 'super-sticky' materials: Improved protein control could lead to wound-healing gels and other applications November 3rd, 2019

Physicists found weak spots in ceramic/graphene composites: Physicists found out the structures in nanomaterials made of ceramic and graphene plates, in which cracks appear most frequently September 27th, 2019

Turning heat into electricity: A new thermoelectric material developed at FEFU: Young scientists from FEFU manufactured new thermoelectric material based on strontium titanate and titanium oxide September 27th, 2019

Announcements

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Arrowhead Pharmaceuticals to Webcast Fiscal 2019 Year End Results November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

A distinct spin on atomic transport: Work that demonstrates simultaneous control over transport and spin properties of cold atoms establishes a framework for exploring concepts of spintronics and solid-state physics November 8th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Self-assembled microspheres of silica to cool surfaces without energy consumption November 8th, 2019

Arrowhead and Collaborator Janssen Present Phase 2 Clinical Data for Investigational Hepatitis B Regimens at The Liver Meeting® 2019 November 8th, 2019

Research partnerships

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Nanoparticle orientation offers a way to enhance drug delivery: Coating particles with 'right-handed' molecules could help them penetrate cancer cells more easily November 5th, 2019

Cage molecules act as molecular sieves for hydrogen isotope separation November 1st, 2019

New technique lets researchers map strain in next-gen solar cells November 1st, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project