Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Robust new process forms 3-D shapes from flat sheets of graphene

This study demonstrates graphene integration to a variety of different microstructured geometries, including pyramids, pillars, domes, and inverted pyramids.
CREDIT: Nam Research Group, University of Illinois
This study demonstrates graphene integration to a variety of different microstructured geometries, including pyramids, pillars, domes, and inverted pyramids.

CREDIT: Nam Research Group, University of Illinois

Abstract:
Researchers from the University of Illinois at Urbana-Champaign have developed a new approach for forming 3D shapes from flat, 2D sheets of graphene, paving the way for future integrated systems of graphene-MEMS hybrid devices and flexible electronics.

Robust new process forms 3-D shapes from flat sheets of graphene

Urbana, IL | Posted on June 23rd, 2015

"To the best of our knowledge, this study is the first to demonstrate graphene integration to a variety of different microstructured geometries, including pyramids, pillars, domes, inverted pyramids, and the 3D integration of gold nanoparticles (AuNPs)/graphene hybrid structures," explained SungWoo Nam, an assistant professor of mechanical science and engineering at Illinois. "The flexibility and 3D nature of our structures will enable intimate biosensing devices which can be conformed to the shape and characteristics of human skin and other biological systems. The 3D protruding micro-structures can also achieve enhanced sensitivity by maximizing the effective contact area between the sensors and non-flat surfaces.

"We also expect that our new 3D integration approach will facilitate advanced classes of hybrid devices between microelectromechanical systems (MEMS) and 2D materials for sensing and actuation."

Graphene, a two-dimensional honeycomb lattice of sp2-bonded carbon atoms, has been widely studied due to its high carrier mobility, chemical inertness, and biocompatibility. To date, various reported methods of graphene transfer have been mostly limited to planar or curvilinear surfaces due to the challenges associated with fractures from local stress during transfer onto 3D microstructured surfaces.

"Our method utilizes wet-transfer and adaptive substrate-engineering, providing several key advantages over other fabrication/integration methods of 3D graphene," stated Jonghyun Choi, a graduate student in Nam's research group and first author of the article, "Three-Dimensional Integration of Graphene via Swelling, Shrinking, and Adaptation," appearing in Nano Letters. "Our results demonstrate a simple, versatile, and scalable method to integrate graphene with 3D geometries with various morphologies and dimensions. Not only are these 3D features larger than those reported in previous works, but we also demonstrate the uniformity and damage-free nature of integrated graphene around the 3D features."

The researchers' robust approach to integrate graphene onto 3D microstructured surfaces maintains the structural integrity of graphene, where the out-of-plane dimensions of the 3D features vary from 3.5 to 50 μm. The process incorporates three sequential steps: 1) substrate swelling using a solvent that 2) shrinks during the evaporation process, allowing graphene to 3) adapt, or conform to the shape of a prepared substrate, to achieve damage-free, large area integration of graphene on 3D microstructures.

"Our swelling, shrinking, and adaptation steps are optimized to minimize the degree of graphene suspension around the 3D microstructures and facilitate successful 3D integration," Nam added. "We control the amount of substrate swelling by adjusting the time of immersion in organic solvent and the mixing ratios of monomer and curing agent of the polydimethylsiloxane (PDMS) substrate."

Detailed scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and electrical resistance measurement studies show that the amount of substrate swelling, as well as the flexural rigidities of the transfer film, affect the integration yield and quality of the integrated graphene. To demonstrate the versatility of their approach, the researchers applied the process to a variety of 3D microstructured geometries, as well as integrating hybrid structures of graphene decorated with gold nanoparticles onto 3D microstructure substrates, demonstrating the compatibility of the integration method with other hybrid nanomaterials.

###

In addition to Nam and Choi, the article's co-authors include Hoe Joon Kim, Michael Cai Wang, Juyoung Leem, and William P. King, from the Department of Mechanical Science and Engineering at Illinois.

This work was supported by the Air Force Office of Scientific Research/Asian Office of Aerospace Research Development Nano Bio Info Technology (NBIT) Phase III Program, the American Chemical Society Petroleum Research Fund, the Korean-American Scientists and Engineers Association and the National Science Foundation. Experiments were carried out in part in the Frederick Seitz Materials Research Laboratory and the Micro and Nano Technology Laboratory, and the Beckman Institute Imaging Technology Group at Illinois.

####

For more information, please click here

Contacts:
SungWoo Nam

217-300-0267

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Imaging

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

New method enables high-resolution measurements of magnetism February 7th, 2018

Leti Presents Optical-Equipment Curving Technology that Improves Performance, Cuts Costs: ‘Disruptive Approach’ for Imaging Applications Presented in Paper At Photonics West and Demonstrated in Leti’s Booth February 2nd, 2018

New technology aiming to improve trueness in the piezoelectric microscopy characterization of ceramic materials January 26th, 2018

New research yields super-strong aluminum alloy January 25th, 2018

Graphene/ Graphite

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

A new radiation detector made from graphene: A new bolometer exploits the thermoelectric properties of graphene February 6th, 2018

Flexible Electronics

Arrowhead Pharmaceuticals to Webcast Fiscal 2018 First Quarter Results February 3rd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

MEMS

First Capacitive Transducer with 13nm Gap July 27th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Sensors

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Leti Chief Scientist Barbara De Salvo Will Help Kick Off ISSCC 2018 with Opening-Day Keynote: In Addition, Leti Scientists Will Present and Demo New Technology for Piezoelectric Energy Harvesting February 8th, 2018

Engineers develop flexible, water-repellent graphene circuits for washable electronics January 24th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Discoveries

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Materials/Metamaterials

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Atomic Flaws Create Surprising, High-Efficiency UV LED Materials: Subtle surface defects increase UV light emission in greener, more cost-effective LED and catalyst materials February 8th, 2018

A new radiation detector made from graphene: A new bolometer exploits the thermoelectric properties of graphene February 6th, 2018

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Tools

New method enables high-resolution measurements of magnetism February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

A new radiation detector made from graphene: A new bolometer exploits the thermoelectric properties of graphene February 6th, 2018

Measuring the temperature of two-dimensional materials at the atomic level February 3rd, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Joseph N. Pelton named 2017 Lifeboat Foundation Guardian Award Winner February 1st, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project