Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Designer electronics out of the printer: Optimized printing process enables custom organic electronics

Organic electronics, based on conducting polymers, are hailed as a promising future market. This is the cover illustration of Advanced Materials (10.1002/adma.201570148).
CREDIT: Artwork: Christoph Hohmann / Nanosystems Initiative Munich
Organic electronics, based on conducting polymers, are hailed as a promising future market. This is the cover illustration of Advanced Materials (10.1002/adma.201570148).

CREDIT: Artwork: Christoph Hohmann / Nanosystems Initiative Munich

Abstract:
They are thin, light-weight, flexible and can be produced cost- and energy-efficiently: printed microelectronic components made of synthetics. Flexible displays and touch screens, glowing films, RFID tags and solar cells represent a future market. In the context of an international cooperation project, physicists at the Technische Universität München (TUM) have now observed the creation of razor thin polymer electrodes during the printing process and successfully improved the electrical properties of the printed films.

Designer electronics out of the printer: Optimized printing process enables custom organic electronics

Muenchen, Germany | Posted on June 16th, 2015

Solar cells out of a printer? This seemed unthinkable only a few years ago. There were hardly any alternatives to classical silicon technology available. In the mean time touch screens, sensors and solar cells can be made of conducting polymers. Flexible monitors and glowing wall paper made of organic light emitting diodes, so-called OLEDs, are in rapid development. The "organic electronics" are hailed as a promising future market.

However, the technology also has its pitfalls: To manufacture the components on an industrial scale, semiconducting or insulating layers - each a thousand times thinner than a human hair - must be printed onto a carrier film in a predefined order. "This is a highly complex process, whose details need to be fully understood to allow custom-tailored applications," explains Professor Peter Müller-Buschbaum of the Chair of Functional Materials at TU München.

A further challenge is the contacting between flexible, conducting layers. Hitherto electronic contacts made of crystalline indium tin oxide were frequently used. However, this construction has numerous drawbacks: The oxide is more brittle than the polymer layers over them, which limits the flexibility of the cells. Furthermore, the manufacturing process also consumes much energy. Finally, indium is a rare element that exists only in very limited quantities.

Polymers in X-ray light

A few months ago, researchers from the Lawrence Berkeley National Laboratory in California for the first time succeeded in observing the cross-linking of polymer molecules in the active layer of an organic solar cell during the printing process. In collaboration with their colleagues in California, Müller-Buschbaum's team took advantage of this technology to improve the characteristics of the polymer electronic elements.

The researchers used X-ray radiation generated in the Berkley synchrotron for their investigations. The X-rays are directed to the freshly printed synthetic layer and scattered. The arrangement and orientation of the molecules during the curing process of the printed films can be determined from changes in the scattering pattern.

"Thanks to the very intensive X-ray radiation we can achieve a very high time resolution," says Claudia M. Palumbiny. In Berkeley the physicist from the TUM investigated the "blocking layer" that sorts and selectively transports the charge carriers in the organic electronic components. The TUM research team is now, together with its US colleagues, publishing the results in the trade journal Advanced Materials.

Custom properties

"In our work, we showed for the first time ever that even small changes in the physico-chemical process conditions have a significant influence on the build-up and properties of the layer," says Claudia M. Palumbiny. "Adding solvents with a high boiling point, for example, improves segregation in synthetics components. This improves the crystallization in conducting molecules. The distance between the molecules shrinks and the conductivity increases.

In this manner stability and conductivity can be improved to such an extent that the material can be deployed not only as a blocking layer, but even as a transparent, electrical contact. This can be used to replace the brittle indium tin oxide layers. "At the end of the day, this means that all layers could be produced using the same process," explains Palumbiny. "That would be a great advantage for manufacturers."

To make all of this possible one day, TUM researchers want to continue investigating and optimizing the electrode material further and make their know-how available to industry. "We have now formed the basis for pushing ahead materials development with future investigations so that these can be taken over by industrial enterprises," explains Prof. Müller-Buschbaum.

###

The research was supported by the GreenTech Initiative "Interface Science for Photovoltaics" (ISPV) of the EuroTech Universities together with the International Graduate School of Science and Engineering (IGSSE) at TUM and by the Cluster of Excellence "Nanosystems Initiative Munich" (NIM). Further support came from the Elite Network of Bavaria's International Doctorate Program "NanoBioTechnology" (IDK-NBT) and the Center for NanoScience (CeNS) and from "Polymer-Based Materials for Harvesting Solar Energy" (PHaSE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences. Portions of the research were carried out at the Advanced Light Source which receives support by the Office of Basic Energy Sciences of the U.S. Department of Energy.

Publication:

The Crystallization of PEDOT:PSS Polymeric Electrodes Probed In Situ during Printing
Claudia M. Palumbiny, Feng Liu, Thomas P. Russell, Alexander Hexemer, Cheng Wang, and Peter Müller-Buschbaum
Advanced Materials, June 10, 2015, 27, 22, 3391-3397 - DOI: 10.1002/adma.201500315

####

For more information, please click here

Contacts:
Dr. Andreas Battenberg

49-892-891-0510

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Display technology/LEDs/SS Lighting/OLEDs

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Micro-LEDs achieve superior brightness with Picosun’s ALD technology April 23rd, 2019

A hole in one for holographic display: Tiny pinholes in a thin film could pave the way for more widespread applications for 3D holographic displays April 19th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Sensors

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Better microring sensors for optical applications May 10th, 2019

Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging April 1st, 2019

A Research Hat-Trick: Mechanical engineering professor Bolin Liao receives third early-career award since September March 26th, 2019

Discoveries

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Materials/Metamaterials

ZEN gets $1m grant for graphene-enhanced concrete project May 12th, 2019

Computing faster with quasi-particles May 10th, 2019

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

Announcements

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

Energy

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Skoltech researchers developed new perovskite-inspired semiconductors for electronic devices May 13th, 2019

Exploring New Ways to Control Thermal Radiation April 29th, 2019

Research partnerships

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

Exploring New Ways to Control Thermal Radiation April 29th, 2019

Solar/Photovoltaic

Skoltech researchers developed new perovskite-inspired semiconductors for electronic devices May 13th, 2019

Exploring New Ways to Control Thermal Radiation April 29th, 2019

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

Mystery of negative capacitance in perovskite solar cells solved April 5th, 2019

RFID

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Conformal transfer of graphene for reproducible device fabrication August 11th, 2015

GLOBALFOUNDRIES Launches Industry’s First 22nm FD-SOI Technology Platform: 22FDX offers the best combination of performance, power consumption and cost for IoT, mainstream mobile, RF connectivity, and networking July 13th, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

No ink needed for these graphene artworks: Artist employs Rice University lab's laser-induced graphene as medium for ultramodern art May 3rd, 2019

Researchers grow cells in 'paper organs' May 1st, 2019

Tuneable reverse photochromes in the solid state April 3rd, 2019

New composite advances lignin as a renewable 3D printing material December 28th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project