Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers develop new way to manufacture nanofibers

Researchers at the University of Georgia have developed an inexpensive way to manufacture nanofibers. The new method, dubbed 'magnetospinning,' provides a very simple, scalable and safe means for producing very large quantities of nanofibers that can be embedded with a multitude of materials, including live cells and drugs.
CREDIT: Cal Powell/UGA
Researchers at the University of Georgia have developed an inexpensive way to manufacture nanofibers. The new method, dubbed 'magnetospinning,' provides a very simple, scalable and safe means for producing very large quantities of nanofibers that can be embedded with a multitude of materials, including live cells and drugs.

CREDIT: Cal Powell/UGA

Abstract:
Researchers at the University of Georgia have developed an inexpensive way to manufacture extraordinarily thin polymer strings commonly known as nanofibers. These polymers can be made from natural materials like proteins or from human-made substances to make plastic, rubber or fiber, including biodegradable materials.

Researchers develop new way to manufacture nanofibers

Athens, GA | Posted on May 21st, 2015

The new method, dubbed "magnetospinning" by the researchers, provides a very simple, scalable and safe means for producing very large quantities of nanofibers that can be embedded with a multitude of materials, including live cells and drugs.

Many thousands of times thinner than the average human hair, nanofibers are used by medical researchers to create advanced wound dressings--and for tissue regeneration, drug testing, stem cell therapies and the delivery of drugs directly to the site of infection. They are also used in other industries to manufacture fuel cells, batteries, filters and light-emitting screens.

"The process we have developed makes it possible for almost anyone to manufacture high-quality nanofibers without the need for expensive equipment," said Sergiy Minko, study co-author and the Georgia Power Professor of Polymers, Fibers and Textiles in UGA's College of Family and Consumer Sciences. "This not only reduces costs, but it also makes it possible for more businesses and researchers to experiment with nanofibers without worrying too much about their budget."

Currently, the most common nanofiber manufacturing technique--electrospinning--uses high-voltage electricity and specially designed equipment to produce the polymer strings. Equipment operators must have extensive training to use the equipment safely.

"In contrast to other nanofiber spinning devices, most of the equipment used in our device is very simple," Minko said. "Essentially, all you need is a magnet, a syringe and a small motor."

At laboratory scale, a very simple handcrafted setup is capable of producing spools containing hundreds of yards of nanofibers in a matter of seconds. Polymer that has been melted or liquefied in a solution is mixed with biocompatible iron oxide or another magnetic material and placed inside a hypodermic needle. This needle is then positioned near a magnet that is fixed atop a spinning circular platter. As the magnet passes by the tip of the needle, a droplet of the polymer fluid stretches out and attaches to the magnet, forming a nanofiber string that winds around the platter as it continues to spin.

The device can spin at more than 1,000 revolutions per minute, enough time to create more than 50 kilometers--or about 31 miles--of ultra-thin nanofiber.

It's a relatively simple process, but it produces a very high-quality product, said Alexander Tokarev, paper co-author and postdoctoral research associate in Minko's lab.

"The product we can make is just as thin and just as strong as nanofibers created through other methods," he said. "Plus, users don't have to worry about the safety issues of using high voltages or the complexity of other machines."

The researchers can use this method to create a variety of nanofibers simply by changing the polymer placed in the syringe. They can, for example, create specially designed nanofibers that will promote the growth of stem cells. Fibers like these are currently used to create scaffolding for lab-grown tissues and organs.

Nanofibers can also be loaded with proteins, nanotubes, fluorescent materials and therapeutic agents.

"We can use almost any kind of polymer with this platform, and we can tailor make the nanofibers for different applications," Minko said. "It's like cooking. We just change the ingredients a bit, and the kind of fiber we get is very different."

###

The University of Georgia Research Foundation Inc. has filed a patent application on this new method.

####

For more information, please click here

Contacts:
Sergiy Minko

706-542-3122

Copyright © University of Georgia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The study is available at:

Related News Press

News and information

Improving quantum computers April 19th, 2019

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

A light-activated remote control for cells April 17th, 2019

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Videos/Movies

New microscopy method provides more details about nanocomposites April 12th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

Odd reaction creates a stir in the lab: Rice University researchers find using certain stir bars can create laboratory errors March 29th, 2019

The moiré patterns of three layers change the electronic properties of graphene March 8th, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

Fullerenes bridge conductive gap in organic photovoltaics: Efficient cathode interlayers made of ionene polymers refined with pendant fullerenes March 29th, 2019

Odd reaction creates a stir in the lab: Rice University researchers find using certain stir bars can create laboratory errors March 29th, 2019

Now made in Japan – Asian battery manufacturers welcome highly conductive nanotube additive March 7th, 2019

Nanomedicine

A light-activated remote control for cells April 17th, 2019

Arrowhead Pharmaceuticals Receives FDA Clearance to Begin Phase 2/3 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease April 15th, 2019

Arrowhead Presents Clinical Data on JNJ-3989 (ARO-HBV) at The International Liver Congress™ April 12th, 2019

'Nanobodies' from alpacas could help bring CAR T-cell therapy to solid tumors: Unusually small antibodies, targeted to the tumor micro-environment, curb melanoma and colon cancer in mouse models April 11th, 2019

Discoveries

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

A light-activated remote control for cells April 17th, 2019

Arrowhead Pharmaceuticals Receives FDA Clearance to Begin Phase 2/3 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease April 15th, 2019

New microscopy method provides more details about nanocomposites April 12th, 2019

Materials/Metamaterials

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Mystery of negative capacitance in perovskite solar cells solved April 5th, 2019

Squeezed nanocrystals: A new model predicts their shape when blanketed under graphene April 5th, 2019

Tuneable reverse photochromes in the solid state April 3rd, 2019

Announcements

Improving quantum computers April 19th, 2019

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

A light-activated remote control for cells April 17th, 2019

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Improving quantum computers April 19th, 2019

Electric skyrmions charge ahead for next-generation data storage: Berkeley Lab-led research team makes a chiral skyrmion crystal with electric properties; puts new spin on future information storage applications April 18th, 2019

A light-activated remote control for cells April 17th, 2019

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

Patents/IP/Tech Transfer/Licensing

Magnetoresistive sensors for near future innovative development March 22nd, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Flipping the view: New microscope offers options for drug discovery, safety and effectiveness February 28th, 2019

Nanobiotechnology

A light-activated remote control for cells April 17th, 2019

Arrowhead Pharmaceuticals Receives FDA Clearance to Begin Phase 2/3 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease April 15th, 2019

Arrowhead Presents Clinical Data on JNJ-3989 (ARO-HBV) at The International Liver Congress™ April 12th, 2019

'Nanobodies' from alpacas could help bring CAR T-cell therapy to solid tumors: Unusually small antibodies, targeted to the tumor micro-environment, curb melanoma and colon cancer in mouse models April 11th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project