Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas

Abstract:
CRAIC Technologies, a leading innovator of UV-visible-NIR microanalysis solutions, is proud to introduce CRAIC TimePro™ kinetic spectroscopy software. This software package is designed to be used with CRAIC Technology’s microspectrophotometers and their controlling Lambdafire ™ software. CRAIC TimePro™ allows the user to monitor changes in the spectra over time. The most unique feature is that this software will allow users to measure the time dependant changes in full UV-visible-NIR range reflectance, absorbance and even emission spectra of microscopic samples. This will provide a unique and valuable tool for everything from chemistry to biological research.

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas

San Dimas, CA | Posted on May 2nd, 2015

“CRAIC TimePro™ software adds a powerful and unique feature set to CRAIC Technologies microspectrophotometers. Now our customers are able to monitor the kinetic variations in samples across the full spectral range of the instrument; from the deep ultraviolet through the visible and into the near infrared regions” says Dr. Paul Martin, president of CRAIC Technologies. “Our engineers worked with our customers to create CRAIC TimePro™. Now CRAIC microspectrophotometer users will be able to measure how the spectral response of microscopic samples changes over time. And with this flexible software, kinetic spectroscopy can be done by UV-visible-NIR absorbance, reflectance or even fluorescence microspectroscopy.”

CRAIC TimePro™ is a plug-in module for CRAIC Technologies Lambdafire™ software…the controlling software for CRAIC Technologies microspectrophotometers. This user friendly software allows for time dependant spectroscopy by absorbance, reflectance and emission (including fluorescence). Additionally, the software is able to measure the full range spectrum over time in each of these modes and display the results.

For more information on the CRAIC TimePro™ kinetic spectroscopy software and CRAIC Technologies microspectrophotometers, visit www.microspectra.com.

####

About CRAIC Technologies, Inc.
CRAIC Technologies, Inc. is a global technology leader focused on innovations for microscopy and microspectroscopy in the ultraviolet, visible and near-infrared regions. CRAIC Technologies creates cutting-edge solutions, with the very best in customer support, by listening to our customers and implementing solutions that integrate operational excellence and technology expertise. CRAIC Technologies provides answers for customers in forensic sciences, biotechnology, semiconductor, geology, nanotechnology and materials science markets who demand quality, accuracy, precision, speed and the best in customer support.

For more information, please click here

Contacts:
CRAIC Technologies, Inc.

+1-310-573-8180

Copyright © CRAIC Technologies, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Software

Visualizing nanoscale structures in real time: Open-source software enables researchers to see materials in 3D while they're still on the electron microscope August 19th, 2022

Luisier wins SNSF Advanced Grant to develop simulation tools for nanoscale devices July 8th, 2022

CEA and Spectronite Develop Software Radio For Spectrally Efficient Backhaul Solutions: Adapted for Spectronite’s X-Series Modem for 5G Systems, the Technology Enables Carrier Aggregation that Provides Radio Links with 10Gb/s Capacity March 4th, 2022

Oxford Instruments’ Atomfab® system is production-qualified at a market-leading GaN power electronics device manufacturer December 17th, 2021

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project