Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone

The MIT researchers' wireless chemical sensor.

Photo: Melanie Gonick
The MIT researchers' wireless chemical sensor.

Photo: Melanie Gonick

Abstract:
MIT chemists have devised a new way to wirelessly detect hazardous gases and environmental pollutants, using a simple sensor that can be read by a smartphone.

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone

Cambridge, MA | Posted on December 8th, 2014

These inexpensive sensors could be widely deployed, making it easier to monitor public spaces or detect food spoilage in warehouses. Using this system, the researchers have demonstrated that they can detect gaseous ammonia, hydrogen peroxide, and cyclohexanone, among other gases.

"The beauty of these sensors is that they are really cheap. You put them up, they sit there, and then you come around and read them. There's no wiring involved. There's no power," says Timothy Swager, the John D. MacArthur Professor of Chemistry at MIT. "You can get quite imaginative as to what you might want to do with a technology like this."

Swager is the senior author of a paper describing the new sensors in the Proceedings of the National Academy of Sciences the week of Dec. 8. Chemistry graduate student Joseph Azzarelli is the paper's lead author; other authors are postdoc Katherine Mirica and former MIT postdoc Jens Ravnsbaek.

Versatile gas detection

For several years, Swager's lab has been developing gas-detecting sensors based on devices known as chemiresistors, which consist of simple electrical circuits modified so that their resistance changes when exposed to a particular chemical. Measuring that change in resistance reveals whether the target gas is present.

Unlike commercially available chemiresistors, the sensors developed in Swager's lab require almost no energy and can function at ambient temperatures. "This would allow us to put sensors in many different environments or in many different devices," Swager says.

The new sensors are made from modified near-field communication (NFC) tags. These tags, which receive the little power they need from the device reading them, function as wirelessly addressable barcodes and are mainly used for tracking products such as cars or pharmaceuticals as they move through a supply chain, such as in a manufacturing plant or warehouse.

NFC tags can be read by any smartphone that has near-field communication capability, which is included in many newer smartphone models. These phones can send out short pulses of magnetic fields at radio frequency (13.56 megahertz), inducing an electric current in the circuit on the tag, which relays information to the phone.

To adapt these tags for their own purposes, the MIT team first disrupted the electronic circuit by punching a hole in it. Then, they reconnected the circuit with a linker made of carbon nanotubes that are specialized to detect a particular gas. In this case, the researchers added the carbon nanotubes by "drawing" them onto the tag with a mechanical pencil they first created in 2012, in which the usual pencil lead is replaced with a compressed powder of carbon nanotubes. The team refers to the modified tags as CARDs: chemically actuated resonant devices.

When carbon nanotubes bind to the target gas, their ability to conduct electricity changes, which shifts the radio frequencies at which power can be transferred to the device. When a smartphone pings the CARD, the CARD responds only if it can receive sufficient power at the smartphone-transmitted radio frequencies, allowing the phone to determine whether the circuit has been altered and the gas is present.

Current versions of the CARDs can each detect only one type of gas, but a phone can read multiple CARDs to get input on many different gases, down to concentrations of parts per million. With the current version of the technology, the phone must be within 5 centimeters of the CARD to get a reading, but Azzarelli is currently working with Bluetooth technology to expand the range.

Widespread deployment

The researchers have filed for a patent on the sensing technology and are now looking into possible applications. Because these devices are so inexpensive and can be read by smartphones, they could be deployed nearly anywhere: indoors to detect explosives and other harmful gases, or outdoors to monitor environmental pollutants.

Once an individual phone gathers data, the information could be uploaded to wireless networks and combined with sensor data from other phones, allowing coverage of very large areas, Swager says.

The researchers are also pursuing the possibility of integrating the CARDs into "smart packaging" that would allow people to detect possible food spoilage or contamination of products. Swager's lab has previously developed sensors that can detect ethylene, a gas that signals ripeness in fruit.

The CARDs could also be incorporated into dosimeters to help monitor worker safety in manufacturing plants by measuring how much gas the workers are exposed to. "Since it's low-cost, disposable, and can easily interface with a phone, we think it could be the type of device that someone could wear as a badge, and they could ping it when they check in in the morning and then ping it again when they check out at night," Azzarelli says.

###

The research was funded by the U.S. Army Research Laboratory and the U.S. Army Research Office through the MIT Institute for Soldier Nanotechnologies; the MIT Deshpande Center for Technological Innovation; and the National Cancer Institute.

Written by Anne Trafton, MIT News Office

####

For more information, please click here

Contacts:
Sarah McDonnell

617-253-8923

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Wireless/telecommunications/RF/Antennas/Microwaves

Exchanging information securely using quantum communication in future fiber-optic networks: New research demonstrates potential solutions as transmission networks evolve to use multicore fiber March 6th, 2019

Disruptive by Design: Nano Now February 1st, 2019

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Govt.-Legislation/Regulation/Funding/Policy

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Arrowhead Pharmaceuticals Begins Dosing in Phase 1 Study of ARO-APOC3 for Treatment of Hypertriglyceridemia March 11th, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods

Now made in Japan – Asian battery manufacturers welcome highly conductive nanotube additive March 7th, 2019

Straightforward biosynthesis of functional bulk nanocomposites February 5th, 2019

Drilling speed increased by 20% – yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Chemical synthesis of nanotubes: Nanometer-sized tubes made from simple benzene molecules January 11th, 2019

Sensors

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Oxford Instruments and partners launch EU Horizon 2020 project ULISSES: Air sensors for everyone, everywhere March 7th, 2019

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

CEA-Leti & Stanford Target Edge-AI Apps with Breakthrough Memory Cell: Paper at ISSCC 2019 Presents Proof-of-Concept Multi-Bit Chip That Overcomes NVM’s Read/Write, Latency and Integration Challenges February 20th, 2019

Discoveries

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Announcements

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New method to reduce uranium concentration in contaminated water March 18th, 2019

Review of the recent advances of 2D nanomaterials in Lit-ion batteries March 15th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Homeland Security

A bullet-proof heating pad November 2nd, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Military

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Food/Agriculture/Supplements

A Deep tech startup is disrupting dairy industry in Chennai Demo Day at IIT-Madras Research Park February 20th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Disruptive by Design: Nano Now February 1st, 2019

A Nanobiotechnology Startup from a small town in India attracts the Global Investors January 27th, 2019

Environment

Defects help nanomaterial soak up more pollutant in less time: Rice U. researchers find new way to remove PFOS from industrial wastewater March 13th, 2019

Oxford Instruments and partners launch EU Horizon 2020 project ULISSES: Air sensors for everyone, everywhere March 7th, 2019

Rice U. lab adds porous envelope to aluminum plasmonics: Scientists marry gas-trapping framework to light-powered nanocatalysts February 10th, 2019

Platinum forms nano-bubbles: Technologically important noble metal oxidises more readily than expected January 28th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project