Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > "Nanocamera" takes pictures at distances smaller than light's own wavelength: How is it possible to record optically encoded information for distances smaller than the wavelength of light?

Image of the Illinois “I” logo recorded by the plasmonic film; each bar in the letter is approximately 6 micrometers.
Image of the Illinois “I” logo recorded by the plasmonic film; each bar in the letter is approximately 6 micrometers.

Abstract:
Researchers at the University of Illinois at Urbana-Champaign have demonstrated that an array of novel gold, pillar-bowtie nanoantennas (pBNAs) can be used like traditional photographic film to record light for distances that are much smaller than the wavelength of light (for example, distances less than ~600 nm for red light). A standard optical microscope acts as a "nanocamera" whereas the pBNAs are the analogous film.

"Nanocamera" takes pictures at distances smaller than light's own wavelength: How is it possible to record optically encoded information for distances smaller than the wavelength of light?

Urbana, IL | Posted on July 17th, 2014

"Unlike conventional photographic film, the effect (writing and curing) is seen in real time," explained Kimani Toussaint, an associate professor of mechanical science and engineering, who led the research. "We have demonstrated that this multifunctional plasmonic film can be used to create optofluidic channels without walls. Because simple diode lasers and low-input power densities are sufficient to record near-field optical information in the pBNAs, this increases the potential for optical data storage applications using off-the-shelf, low-cost, read-write laser systems."

"Particle manipulation is the proof-of-principle application," stated Brian Roxworthy, first author of the group's paper, "Multifunctional Plasmonic Film for Recording Near-Field Optical Intensity," published in the journal, Nano Letters. "Specifically, the trajectory of trapped particles in solution is controlled by the pattern written into the pBNAs. This is equivalent to creating channels on the surface for particle guiding except that these channels do not have physical walls (in contrast to those optofluidics systems where physical channels are fabricated in materials such as PDMS)."

To prove their findings, the team demonstrated various written patterns—including the University's "Block I" logo and brief animation of a stick figure walking—that were either holographically transferred to the pBNAs or laser-written using steering mirrors (see video).

"We wanted to show the analogy between what we have made and traditional photographic film," Toussaint added. "There's a certain cool factor with this. However, we know that we're just scratching the surface since the use of plasmonic film for data storage at very small scales is just one application. Our pBNAs allow us to do so much more, which we're currently exploring."

The researchers noted that the fundamental bit size is currently set by the spacing of the antennas at 425-nm. However, the pixel density of the film can be straightforwardly reduced by fabricating smaller array spacing and a smaller antenna size, as well as using a more tightly focusing lens for recording.

"For a standard Blu-ray/DVD disc size, that amounts to a total of 28.6 gigabites per disk," Roxworthy added. "With modifications to array spacing and antenna features, it's feasible that this value can be scaled to greater than 75 gigabites per disk. Not to mention, it can be used for other exciting photonic applications, such as lab-on-chip nanotweezers or sensing."

"In our new technique, we use controlled heating via laser illumination of the nanoantennas to change the plasmonic response instantaneously, which shows an innovative but easy way to fabricate spatially changing plasmonic structures and thus opens a new avenue in the field of nanotech-based biomedical technologies and nano optics," said Abdul Bhuiya, a co-author and member of the research team.

In addition to Bhuiya and Roxworthy, who earned his PhD in electrical and computer engineering at Illinois and is now a National Research Council postdoctoral researcher at the National Institute of Standards and Technology (NIST), the research team includes postdoctoral researchers V. V. Gopala K. Inavalli and Hao Chen. All are members of Toussaint's Laboratory for Photonics Research of Bio/nano Environments (PROBE) at Illinois. Toussaint is currently on sabbatical as a Martin Luther King, Jr. Visiting Associate Professor at the Massachusetts Institute of Technology.

####

For more information, please click here

Contacts:
Kimani Toussaint

217-244-4088

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Videos/Movies

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

Imaging

Graphene brings quantum effects to electronic circuits January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Oxford Instruments Asylum Research Releases New Application Note: “AFM Applications in Polymer Science and Engineering” January 21st, 2015

Discoveries

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Announcements

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Photonics/Optics/Lasers

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE