Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride

Rouzbeh Shahsavari, left, and Navid Sakhavand used computer simulations to predict the properties of a 3-D nanostructure made with boron nitride.
CREDIT: Jeff Fitlow/Rice University
Rouzbeh Shahsavari, left, and Navid Sakhavand used computer simulations to predict the properties of a 3-D nanostructure made with boron nitride.

CREDIT: Jeff Fitlow/Rice University

Abstract:
A three-dimensional porous nanostructure would have a balance of strength, toughness and ability to transfer heat that could benefit nanoelectronics, gas storage and composite materials that perform multiple functions, according to engineers at Rice University.

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride

Houston, TX | Posted on July 15th, 2014

The researchers made this prediction by using computer simulations to create a series of 3-D prototypes with boron nitride, a chemical compound made of boron and nitrogen atoms. Their findings were published online July 14 in the Journal of Physical Chemistry C.

The 3-D prototypes fuse one-dimensional boron nitride nanotubes and two-dimensional sheets of boron nitride.

"We combined the tubes and sheets together to make them three-dimensional, thus offering more functionality," said Rouzbeh Shahsavari, assistant professor of civil and environmental engineering and of materials science and nanoengineering, who co-authored the paper with graduate student Navid Sakhavand. In the 3-D nanostructure, the extremely thin sheets of boron nitride are stacked in parallel layers, with tube-shaped pillars of boron nitride between each layer to keep the sheets separated.

Shahsavari noted that in the one-dimensional and two-dimensional versions of boron nitride, there is always a bias in directional properties, either toward the tube axis or in-plane directions, which is not suitable for widespread 3-D use in technology and industrial applications.

For example, a one-dimensional boron nitride nanotube can be stretched about 20 percent of its length before it breaks, but the 3-D prototype of boron nitride can be stretched about 45 percent of its length without breaking.

When the typical one- or two-dimensional boron nitride materials are stretched in one direction, they tend to shrink in the other perpendicular directions. In the 3-D prototype, however, when the material stretches in the in-plane direction, it also stretches in perpendicular directions. "Here, the junction between the tubes and sheets has a unique curve-like structure that contributes to this interesting phenomenon, known as the auxetic effect," Shahsavari said.

The thermal transport properties of the 3-D prototype are also advantageous, he said. The one-dimensional boron nitride tubes and two-dimensional sheets can carry heat very fast but only in one or two directions. The 3-D prototype carries heat relatively fast in all 3-D directions. "This feature is ideal for applications that require materials or coating with the capability of extremely fast thermal diffusion to the environments. Examples include car engines or computer CPUs where a fast heat transfer to the environments is critical in proper functioning," Shahsavari said.

The 3-D boron nitride prototype has a very porous and lightweight structure. Each gram of this Swiss cheese-like structure has a surface area equivalent to three tennis courts. Such a high surface area lends itself to customized applications. Shahsavari and Sakhavand predicted that the 3-D prototype of boron nitride would allow efficient gas storage and separation, for example, in vehicles that run on hydrogen cells.

Unlike graphene-based nanostructures, boron nitride is an electrically insulating material. Thus, the 3-D boron nitride prototype has a potential to complement graphene-based nanoelectronics, including potential for the next generation of 3-D semiconductors and 3-D thermal transport devices that could be used in nanoscale calorimeters, microelectronic processes and macroscopic refrigerators.

The actual 3-D boron nitride prototype still has to be created in the lab, and numerous efforts are already underway. "Our computer simulations show what properties can be expected from these structures and what the key factors are that control their functionality," Shahsavari said.

The research was funded by Rice University. The supercomputers used for the research are supported by the National Institutes of Health, IBM, CISCO, Qlogic and Adaptive Computing and the Data Analysis and Visualization Cyber infrastructure funded by the National Science Foundation.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance.

Follow Rice News and Media Relations on Twitter @RiceUNews.

For more information, please click here

Contacts:
David Ruth
713-348-6327


B.J. Almond
713-348-6770

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A copy of the Journal of Physical Chemistry C paper is available at:

Related News Press

News and information

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Nanotubes/Buckyballs

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

SouthWest Nanotechnologies CEO Dave Arthur Appointed to the Board of Affiliates of Rice University Professional Science Master’s Program February 13th, 2015

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Discoveries

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Announcements

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Energy

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE