Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ribosome Research in Atomic Detail Offers Potential Insights into Cancer, Anemia, Alzheimer’s: New movement during decoding occurs in humans, not in bacteria

The newly discovered rolling movement shown in (A) three-dimensional cryo-electron microscopy image of ribosome, and (B) computer-generated atomic-resolution model of the human ribosome consistent with microscopy. A). Arrows indicate the direction of movement during transition between the two different states. B). Ribbons represent backbone of RNA and protein molecules within the ribosome. Color bar indicates the amount of motion during rolling.
The newly discovered rolling movement shown in (A) three-dimensional cryo-electron microscopy image of ribosome, and (B) computer-generated atomic-resolution model of the human ribosome consistent with microscopy. A). Arrows indicate the direction of movement during transition between the two different states. B). Ribbons represent backbone of RNA and protein molecules within the ribosome. Color bar indicates the amount of motion during rolling.

Abstract:
A groundbreaking study of the human ribosome is revealing that the tiny molecular machine is more versatile than previously understood. Minor changes in its sequencing can change its operation, allowing it to adapt to a changing environment, as described in a paper published today in Cell.

Ribosome Research in Atomic Detail Offers Potential Insights into Cancer, Anemia, Alzheimer’s: New movement during decoding occurs in humans, not in bacteria

Los Alamos, NM | Posted on July 3rd, 2014

"From a practical standpoint, these first studies of the atomistic mechanism of the human ribosome open a window into a range of diseases, from anemia, to cancer, to Alzheimer's," said researcher Karissa Sanbonmatsu of Los Alamos National Laboratory. The new publication shows the first study of decoding the genetic code by human ribosomes in atomic detail.

"Cracking the mechanism of human ribosomes will have applications to a variety of diseases, so we are now seeing the real payoff of over a decade of computer simulations of the ribosome," Sanbonmatsu said.

For more than a decade, Los Alamos has been successfully involved in applying computational approaches for modeling the structure and dynamic aspects of large and biologically important molecular machines such as the ribosome. "The insufficient precision of the developed models often hinders the direct connection of their structural roles to various functions they perform. This problem is solved when connecting the structural modeling to high-resolution cryo-electron microscopy," said Chang-Shung Tung, another Los Alamos researcher on the project.

Tiny protein factories

In general, molecular machines permeate all life forms, including humans. It is within the ribosome, found in all living cells, that proteins are created, making the ribosome one of life's most fundamental machines.

This research shows that the ribosome is highly programmable, where minor changes in its sequence change its operation. These changes allow it to adapt to the changing environment. Specifically, the human ribosome shows subtle differences in overall structure from the bacterial ribosome; yet these changes alter its inner workings, going from a molecular mechanism based on a ‘rocking' motion to a ‘rolling' motion. This is an insight that was unknown until this study was performed.

"The ribosome has a masterful design: a few bit flips of its sequence transform its repertoire of motions, enabling it decode genetic information with even higher fidelity, while adapting to the dramatically different environments presented by human cells," said Sanbonmatsu.

Ribosomes are key to much antibiotic therapy

Ribosomes are the target of 50 percent of antibiotics. To eliminate side effects and improve efficacy, researchers must understand how antibiotics interact with human ribosomes in addition to bacterial ribosomes. In addition, malformed human ribosomes are related to many different human diseases.

In the paper, the team presents subnanometer resolution cryo-electron microscopy maps of the mammalian 80S ribosome, revealing significant differences in the elongation mechanism between bacteria and mammals.

The cryo-electron microscopy was performed by the Christian Spahn Lab @ Charite Medical College, Berlin, Germany The computer modeling was done at Los Alamos National Laboratory and the New Mexico Consortium, supported by the Laboratory's Institutional Computing resources.

The project was funded in part by the National Institutes of Health through LANL and also through the Human Frontiers Science Project through New Mexico Consortium.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS Corporation for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper: Regulation of the mammalian elongation cycle by 40S subunit rolling: A eukaryotic specific ribosome arrangement. Manuscript CELL-D-13-01947R1. Published in Cell, July 3, 2014 (www.cell.com). The collaborating institutions are Charite, Berlin, Germany; Max-Plank Institut fur Molekular Genetic, Berlin, Germany; Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos and the Institute of Molecular Biology and Genetics, Kiev, Ukraine.

Related News Press

Laboratories

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

News and information

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

Imaging

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

FEI Technology Award of the German Neuroscience Society Goes to Benjamin Judkewitz of the University of Berlin: Bi-annual award honors excellence in brain research during the German Neuroscience Society’s Annual Meeting, held 18-21 March 2015 March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Molecular Machines

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

New remote control for molecular motors: It is now theoretically possible to remotely control the direction in which magnetic molecules spin, which opens the door to designing applications based on molecular motors March 16th, 2015

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Discoveries

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

From tobacco to cyberwood March 31st, 2015

Announcements

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

From tobacco to cyberwood March 31st, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Tools

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

FEI Technology Award of the German Neuroscience Society Goes to Benjamin Judkewitz of the University of Berlin: Bi-annual award honors excellence in brain research during the German Neuroscience Society’s Annual Meeting, held 18-21 March 2015 March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE