Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Ribosome Research in Atomic Detail Offers Potential Insights into Cancer, Anemia, Alzheimer’s: New movement during decoding occurs in humans, not in bacteria

The newly discovered rolling movement shown in (A) three-dimensional cryo-electron microscopy image of ribosome, and (B) computer-generated atomic-resolution model of the human ribosome consistent with microscopy. A). Arrows indicate the direction of movement during transition between the two different states. B). Ribbons represent backbone of RNA and protein molecules within the ribosome. Color bar indicates the amount of motion during rolling.
The newly discovered rolling movement shown in (A) three-dimensional cryo-electron microscopy image of ribosome, and (B) computer-generated atomic-resolution model of the human ribosome consistent with microscopy. A). Arrows indicate the direction of movement during transition between the two different states. B). Ribbons represent backbone of RNA and protein molecules within the ribosome. Color bar indicates the amount of motion during rolling.

Abstract:
A groundbreaking study of the human ribosome is revealing that the tiny molecular machine is more versatile than previously understood. Minor changes in its sequencing can change its operation, allowing it to adapt to a changing environment, as described in a paper published today in Cell.

Ribosome Research in Atomic Detail Offers Potential Insights into Cancer, Anemia, Alzheimer’s: New movement during decoding occurs in humans, not in bacteria

Los Alamos, NM | Posted on July 3rd, 2014

"From a practical standpoint, these first studies of the atomistic mechanism of the human ribosome open a window into a range of diseases, from anemia, to cancer, to Alzheimer's," said researcher Karissa Sanbonmatsu of Los Alamos National Laboratory. The new publication shows the first study of decoding the genetic code by human ribosomes in atomic detail.

"Cracking the mechanism of human ribosomes will have applications to a variety of diseases, so we are now seeing the real payoff of over a decade of computer simulations of the ribosome," Sanbonmatsu said.

For more than a decade, Los Alamos has been successfully involved in applying computational approaches for modeling the structure and dynamic aspects of large and biologically important molecular machines such as the ribosome. "The insufficient precision of the developed models often hinders the direct connection of their structural roles to various functions they perform. This problem is solved when connecting the structural modeling to high-resolution cryo-electron microscopy," said Chang-Shung Tung, another Los Alamos researcher on the project.

Tiny protein factories

In general, molecular machines permeate all life forms, including humans. It is within the ribosome, found in all living cells, that proteins are created, making the ribosome one of life's most fundamental machines.

This research shows that the ribosome is highly programmable, where minor changes in its sequence change its operation. These changes allow it to adapt to the changing environment. Specifically, the human ribosome shows subtle differences in overall structure from the bacterial ribosome; yet these changes alter its inner workings, going from a molecular mechanism based on a ‘rocking' motion to a ‘rolling' motion. This is an insight that was unknown until this study was performed.

"The ribosome has a masterful design: a few bit flips of its sequence transform its repertoire of motions, enabling it decode genetic information with even higher fidelity, while adapting to the dramatically different environments presented by human cells," said Sanbonmatsu.

Ribosomes are key to much antibiotic therapy

Ribosomes are the target of 50 percent of antibiotics. To eliminate side effects and improve efficacy, researchers must understand how antibiotics interact with human ribosomes in addition to bacterial ribosomes. In addition, malformed human ribosomes are related to many different human diseases.

In the paper, the team presents subnanometer resolution cryo-electron microscopy maps of the mammalian 80S ribosome, revealing significant differences in the elongation mechanism between bacteria and mammals.

The cryo-electron microscopy was performed by the Christian Spahn Lab @ Charite Medical College, Berlin, Germany The computer modeling was done at Los Alamos National Laboratory and the New Mexico Consortium, supported by the Laboratory's Institutional Computing resources.

The project was funded in part by the National Institutes of Health through LANL and also through the Human Frontiers Science Project through New Mexico Consortium.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS Corporation for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper: Regulation of the mammalian elongation cycle by 40S subunit rolling: A eukaryotic specific ribosome arrangement. Manuscript CELL-D-13-01947R1. Published in Cell, July 3, 2014 (www.cell.com). The collaborating institutions are Charite, Berlin, Germany; Max-Plank Institut fur Molekular Genetic, Berlin, Germany; Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos and the Institute of Molecular Biology and Genetics, Kiev, Ukraine.

Related News Press

Imaging

New Objective Focusing Nanopositioner from nPoint July 30th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

News and information

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

Laboratories

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Sono-Tek Corporation Announces New Clean Room Rated Laboratory Facility in China July 18th, 2014

Fundamental Chemistry Findings Could Help Extend Moore’s Law: A Berkeley Lab-Intel collaboration outlines the chemistry of photoresist, enabling smaller features for future generations of microprocessors July 15th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Molecular Machines

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Discoveries

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

From Narrow to Broad July 30th, 2014

Nature inspires a greener way to make colorful plastics July 30th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Tools

New Objective Focusing Nanopositioner from nPoint July 30th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE