Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > University of Maastricht Adds Complete Correlative Workflow from FEI to its Institute of Nanoscopy

Abstract:
The University of Maastricht will use a Correlative Workflow from FEI to enable greater insight into the 3D form of cellular proteins, which may facilitate the development of more effective disease treatment and prevention

University of Maastricht Adds Complete Correlative Workflow from FEI to its Institute of Nanoscopy

Hillsboro, OR and Maastricht, the Netherlands | Posted on June 23rd, 2014

FEI (NASDAQ: FEIC) announces the sale of a complete correlative workflow to the University of Maastricht. The systems will be installed at the University's Institute of Nanoscopy, a new research facility that will use the high-resolution microscopes to understand the working mechanisms of protein complexes in an effort to develop new and improved treatment and prevention for disease, such as cancer and tuberculosis.

"Our ultimate goal is to image biological nano-machines and their mode of action at the macromolecular-scale by pushing the current limits of visual proteomics and nanotechnologies," states Peter Peters, university professor of Nanobiology at the Faculty of Health, Medicine and Life Sciences, and head of the Institute of Nanoscopy. "Cryo-electron microscopy is the only way to study cellular processes close to the in vivo situation. In order to do so, a full workflow is needed, from live cell imaging with fluorescent markers through cryo-fixation to preserve the structure, and finally, using high-resolution cryo-electron tomography to visualize three-dimensional structures down to the nanometer scale. FEI is the only company that can deliver this complete workflow from start to finish."

The complete workflow delivered to the University of Maastricht starts with live cell imaging using CorrSight™, an advanced light microscope that is designed specifically for use in correlative experiments and enables researchers to image live cell dynamics and, when a targeted event is observed, quickly fix those cells for electron microscopy (EM). FEI's MAPS™ software tracks the target position and coordinates and provides a common operating interface between the different tools across the entire workflow. The sample, along with its coordinates, is then transferred to the Scios DualBeam™ (focused ion beam/scanning electron microscope) system, which thins the identified areas of interest down to the appropriate thickness of 100-200 nm while maintaining cryogenic conditions. The thinned sample is transferred to the Tecnai Arctica™ transmission electron microscope (TEM) for high-resolution imaging and analysis. The Arctica is specially-designed for automated, high-throughput cryo-tomography, which acquires a sequence of images from different perspectives to reconstruct a 3D model of the target.

According to Peter Fruhstorfer, FEI's vice president and general manager of Life Sciences, "The complete workflow provides a seamless way to study biological cells and processes. It reduces the tedious manual work and improves reproducibility of the data." He adds, "We have a long-standing relationship with Dr. Peters, who is a leading and well-known researcher in his field. We look forward to working with him to further expand the use of cryo-EM in medical research."

The research team at the University's Institute of Nanoscopy will focus on revealing the 3D structure of a large complex called ‘type VII secretion system' present in the cell wall of Mycobacterium tuberculosis and the most important virulence factor. This knowledge may contribute to improving the vaccine presently used against tuberculosis (TB). This research is based on Dr. Peters' findings of how the bacteria that cause TB behave within cells, which was published in Cell in 2007. The Institute also aims to develop greater insight into the working of the immune system, which may potentially lead to an immune response against cancer cells in the human body. In addition, the team will continue to work on improving sample preparation for cryo-EM.

Please visit www.maastrichtuniversity.nl/nanoscopy for more information. For more information about FEI's Correlative Workflow, please visit: www.fei.com/life-sciences/cellular-biology/.

####

About FEI Company
FEI Company (Nasdaq: FEIC) designs, manufactures and supports a broad range of high-performance microscopy workflow solutions that provide images and answers at the micro-, nano- and picometer scales. Its innovation and leadership enable customers in industry and science to increase productivity and make breakthrough discoveries. Headquartered in Hillsboro, Ore., USA, FEI has over 2,600 employees and sales and service operations in more than 50 countries around the world. More information can be found at: www.fei.com.

About the Institute of Nanoscopy

The Institute of Nanoscopy investigates cell structures at a macromolecular level. Inside cells, proteins work together in complex structures and are responsible for virtually all processes in the human body, including diseases such as cancer. To understand the working mechanisms of protein complexes, three-dimensional imaging of normal and disease-causing protein complexes is essential. This could ultimately lead to more effective treatments, but also to vaccines against diseases such as tuberculosis.

Using high-resolution cryo-electron microscopy, detailed photographs of protein complexes in cells are taken. Next, powerful computers transform these images into 3D structures of protein complexes. This technique requires painstaking preparation of the biological samples. To this end, the Maastricht institute has state-of-the-art microscopes at its disposal. Peter Peters and his recently recruited colleague Raimond Ravelli are renowned experts in the field.

FEI Safe Harbor Statement

This news release contains forward-looking statements that include statements regarding the performance capabilities and benefits of the correlative workflow and the related products, including the CorrSight, MAPS Software, Scios DualBeam and Tecnai Arctica. Factors that could affect these forward-looking statements include but are not limited to our ability to manufacture, ship, deliver and install the tools or software as expected; failure of the product or technology to perform as expected; unexpected technology problems and challenges; changes to the technology; the inability of FEI, its suppliers or project partners to make the technological advances required for the technology to achieve anticipated results; and the inability of the customer to deploy the tools or develop and deploy the expected new applications. Please also refer to our Form 10-K, Forms 10-Q, Forms 8-K and other filings with the U.S. Securities and Exchange Commission for additional information on these factors and other factors that could cause actual results to differ materially from the forward-looking statements. FEI assumes no duty to update forward-looking statements.

For more information, please click here

Contacts:
Sandy Fewkes
(media contact)
MindWrite Communications, Inc.
+1 408 224 4024


FEI Company
Fletcher Chamberlin
(investors and analysts)
Investor Relations
+1 503 726 7710

Copyright © FEI Company

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

New-Contracts/Sales/Customers

Bruker Light-Sheet Microscopes at Major Comprehensive Cancer Center: New Advanced Imaging Center Powered by Two MuVi and LCS SPIM Microscopes March 25th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

Veeco Announces Aledia Order of 300mm MOCVD Equipment for microLED Displays: Propel™ Platform First 300mm System with EFEM Designed for Advanced Display Applications October 20th, 2020

GREENWAVES TECHNOLOGIES Announces Next Generation GAP9 Hearables Platform Using GLOBALFOUNDRIES 22FDX Solution October 16th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project