Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures

Abstract:
A team of nanotechnology researchers at the University of Kentucky has discovered new methods to build heat resistant nanostructures and arrays using RNA.

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures

Lexington, KY | Posted on April 23rd, 2014

The research, led by Peixuan Guo, professor and William Farish Endowed Chair in Nanobiotechnology at the UK College of Pharmacy and Markey Cancer Center, is reported in an article titled "RNA as a Boiling-Resistant Anionic Polymer Material To Build Robust Structures with Defined Shape and Stoichiometry," coauthored by Emil F. Khisamutdinov and Daniel L. Jasinski.

The article, which will appear in a forthcoming edition of the journal ACS Nano, published by the American Chemical Society (ACS), was selected as an ACS "Editors' Choice" and prepublication data is available for free download as a PDF through open access at dx.doi.org/10.1021/nn5006254.

Chemical polymers have seen extensive use in a variety of industries — including clothing, piping, plastics, containers, bottles, cookware, tools and medical materials for drug delivery and tissue engineer materials — because of their high stability and ability to hold their global shape and size. However, on the microscopic scale, these polymers form into random micro-structures, making their size and shape difficult to control.

The Guo lab reports that RNA (ribonucleic acid) can be used as an anionic polymer material to build nanostructures with controllable shape and defined structure. The researchers have fabricated a new RNA triangle structure that utilizes RNA's intrinsic control over shape and size on the nano scale, while demonstrating strong stability.

Previously, RNA was seen as structurally fragile and easily dissociable at a range of temperatures from 35-70 degrees Celsius, making its application feasibility in an industrial setting very limited. Using the special RNA motif discovered in Guo's lab and a new methodology, the researchers demonstrated that they can build RNA nanostructures and patterned arrays that are resistant to 100 degrees Celsius, the boiling temperature of water.

The new RNA triangular nanoarchitechtures can be used to form arrays with a controllable repeat number of the scaffold, resembling monomer units in a polymerization reaction. Thus, the Guo lab was able to produce a honeycomb RNA structure with the new RNAs, allowing for the production of RNA sheets.

Experts say this breakthrough pushes the field of RNA nanotechnology forward, positioning RNA to be a new, unique type of polymer with advantages over conventional chemical polymers.

"This research shows great potential for building stable RNA nanoparticles with properties that could be more easily controlled than standard polymers," said Jessica Tucker, National Institute of Biomedical Imaging and Bioengineering program director for drug and gene delivery systems and devices. "The more control we have over the nanoparticles, the better we can tailor them for use in therapeutics for diseases ranging from cancer to diabetes."

The research was supported by National Institute of Biomedical Imaging and Bioengineering AND National Cancer Institute grants NIBIB EB003730 and NCI CA151648.

####

For more information, please click here

Contacts:
Keith Hautala

859-323-2396

Copyright © University of Kentucky

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

Imaging

Getting a better look at living cells April 25th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

News and information

Getting a better look at living cells April 25th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Getting a better look at living cells April 25th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Molecular Nanotechnology

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Discoveries

Getting a better look at living cells April 25th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Materials/Metamaterials

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Announcements

Getting a better look at living cells April 25th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Getting a better look at living cells April 25th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Nanobiotechnology

Getting a better look at living cells April 25th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies April 24th, 2018

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project