Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Stanford makes flexible carbon nanotube circuits more reliable and power efficient: Engineers invent a process to 'dope' carbon filaments with an additive to improve their electronic performance, paving the way for digital devices that bend

Stanford engineers have developed an improved process for making flexible circuits that use carbon nanotube transistors, a development that paves the way for a new generation of bendable electronic devices.

Credit: Bao Lab, Stanford University
Stanford engineers have developed an improved process for making flexible circuits that use carbon nanotube transistors, a development that paves the way for a new generation of bendable electronic devices.

Credit: Bao Lab, Stanford University

Abstract:
Engineers would love to create flexible electronic devices, such as e-readers that could be folded to fit into a pocket. One approach they are trying involves designing circuits based on electronic fibers, known as carbon nanotubes (CNTs), instead of rigid silicon chips.

Stanford makes flexible carbon nanotube circuits more reliable and power efficient: Engineers invent a process to 'dope' carbon filaments with an additive to improve their electronic performance, paving the way for digital devices that bend

Stanford, CA | Posted on March 18th, 2014

But reliability is essential. Most silicon chips are based on a type of circuit design that allows them to function flawlessly even when the device experiences power fluctuations. However, it is much more challenging to do so with CNT circuits.

Now a team at Stanford has developed a process to create flexible chips that can tolerate power fluctuations in much the same way as silicon circuitry.

"This is the first time anyone has designed a flexible CNT circuits that have both high immunity to electrical noise and low power consumption, " said Zhenan Bao, a professor of chemical engineering at Stanford with a courtesy appointment in Chemistry and Materials Science and Engineering.

The group reported its findings in the Proceedings of the National Academy of Sciences. Huiliang (Evan) Wang, a graduate student in Bao's lab, and Peng Wei, a previous postdoc in Bao's lab, were the lead authors of the paper. Bao's team also included Yi Cui, an associate professor of materials science at Stanford, and Hye Ryoung Lee, a graduate student in his lab.

In principle, CNTs should be ideal for making flexible electronic circuitry. These ultra thin carbon filaments have the physical strength to take the wear and tear of bending, and the electrical conductivity to perform any electronic task.

But until this recent work from the Stanford team, flexible CNTs circuits didn't have the reliability and power-efficiency of rigid silicon chips.

Here's the reason. Over time, engineers have discovered that electricity can travel through semiconductors in two different ways. It can jump from positive hole to positive hole, or it can push through a bunch of negative electronic like a beaded necklace. The first type of semiconductor is called a P-type, the second is called and N-type.

Most importantly, engineers discovered that circuits based on a combination of P-type and N-type transistors perform reliably even when power fluctuations occur, and they also consume much less power. This type of circuit with both P-type and N-type transistors is called complementary circuit. Over the last 50 years engineers have become adept at creating this ideal blend of conductive pathways by changing the atomic structure of silicon through the addition of minute amounts of useful substances - a process called "doping" that is conceptually akin to what our ancestors did thousands of years ago when they stirred tin into molten copper to create bronze.

The challenge facing the Stanford team was that CNTs are predominately P-type semiconductors and there was no easy way to dope these carbon filaments to add N-type characteristics.

The PNAS paper explains how the Stanford engineers overcame this challenge. They treated CNTs with a chemical dopant they developed known as DMBI, and they used an inkjet printer to deposit this substance in precise locations on the circuit.

This marked the first time any flexible CNT circuit has been doped to create a P-N blend that can operate reliably despite power fluctuations and with low power consumption.

The Stanford process also has some potential application to rigid CNTs. Although other engineers have previously doped rigid CNTs to create this immunity to electrical noise, the precise and finely tuned Stanford process out performs these prior efforts, suggesting that it could be useful for both flexible and rigid CNT circuitry.

Bao has focused her research on flexible CNTs, which compete with other experimental materials, such as specially formulated plastics, to become the foundation for bendable electronics, just as silicon has been the basis for rigid electronics.

As a relatively new material, CNTs are playing catch up to plastics, which are closer to mass market use for such things as bendable display screens. The Stanford doping process moves flexible CNTs closer toward commercialization because it shows how to create the P-N blend, and the resultant improvements in reliability and power consumption, already present in plastic circuits.

Although much work lies ahead to make CNTs commercial, Bao believes these carbon filaments are the future of flexible electronics, because they are strong enough to bend and stretch, while also being capable of delivering faster performance than plastic circuitry.

"CNTs offer the best long term electronic and physical attributes," Bao said.

####

For more information, please click here

Contacts:
Tom Abate

650-736-2245

Copyright © Stanford School of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Flexible Electronics

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

'Rivet graphene' proves its mettle: Rice University shows toughened material is easier to handle, useful for electronics July 14th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Chip Technology

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

Nanotubes/Buckyballs/Fullerenes

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Sensing trouble: A new way to detect hidden damage in bridges, roads: University of Delaware engineers devise new method for monitoring structural health July 8th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Announcements

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic