Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Top-10 Brookhaven Lab Breakthroughs of 2013

In this rendering, never-before-seen magnetic excitations ripple through a high-temperature superconductor.
In this rendering, never-before-seen magnetic excitations ripple through a high-temperature superconductor.

Abstract:
2013 was a banner year for science at the U.S. Department of Energy's Brookhaven National Laboratory from our contributions to Nobel Prize-winning research to new insights into catalysts, superconductors, and other materials key to advancing energy-efficient technologies. Our Top-10 picks for the year are below; follow us on Facebook [www.facebook.com/brookhavenlab], Twitter [twitter.com/BrookhavenLab], and Tumblr [brookhavenlab.tumblr.com/] to be in on the breakthroughs of the future as they occur.



High-speed video of water droplets bouncing off a surface textured with nanocones.

Top-10 Brookhaven Lab Breakthroughs of 2013

Upton, NY | Posted on January 15th, 2014

Subatomic discoveriesand disappearances

US Scientists Celebrate Nobel Prize for Higgs Discovery [www.bnl.gov/newsroom/news.php?a=11579]

Phone calls from the Royal Swedish Academy of Sciences to theoretical physicists Franois Englert and Peter Higgs announcing that they'd won the Nobel Prize in Physics last October sparked celebrations among physicists around the world. The two were key players in the development of a theory predicting the existence of a subatomic "Higgs" particle and the mechanism by which it gives mass to the building blocks of our universe. But it took thousands of physicists including more than 100 at Brookhaven Lab to design, build, and run the experiments that discovered the Higgs particle in collisions of protons at Europe's Large Hadron Collider last year. "It's wonderful to see a 50-year-old theory confirmed after decades of hard work and remarkable ingenuity," said Brookhaven Lab Director Doon Gibbs. U.S. contributions of scientific and technical expertise, along with essential computing and data analysis capabilities, were all necessary "to bring the Higgs out of hiding," he said. "It's a privilege to share in the success of an experiment that has changed the face of science."

RHIC's Perfect Liquid a Study in Perfection [www.bnl.gov/newsroom/news.php?a=24018]

The hot soup of early-universe matter created in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC)the only operating particle collider in the U.S.is about as close to "perfect" as possible. That's the result of a new analysis of patterns of particles emerging from the collisions and how those patterns retain echoes of the initial collision geometry. The more the patterns reflect the initial conditions, the lower the "effective shear viscosity," or resistance to flow, needed to describe the data. According to these calculations, RHIC's viscosity turns out to be close to the ideal hydrodynamic limit even lower than that achieved at the Large Hadron Collider, where heavy ions are collided at higher energies for experiments that are complementary with those at RHIC. The findings are helping scientists understand how viscosity varies with temperature and also explore the internal characteristics of the ions before they collide.

New Results from Daya Bay: Tracking the Disappearance of Ghostlike Neutrinos [www.bnl.gov/newsroom/news.php?a=11568]

Scientists conducting research at the Daya Bay Neutrino Experiment in China, including physicists from Brookhaven Lab who play key roles in this research, announced new results about the transformations of these elusive, ghostlike particles that carry invaluable clues about the makeup of the early universe. The latest findings include the collaboration's first data on how neutrino oscillation in which neutrinos mix and change into other "flavors," or types, as they travel varies with neutrino energy, allowing the measurement of a key difference in neutrino masses known as "mass splitting." Understanding the subtle details of neutrino oscillations and other properties of these shape-shifting particles may help resolve some of the deepest mysteries of our universe. "These new precision measurements are a great indication that our efforts will pay off with a deeper understanding of the structure of matter and the evolution of the universe including why we have a universe made of matter at all," said Brookhaven's Steve Kettell, U.S. Daya Bay Chief Scientist.

Insights into superconductors and transistors

A Grand Unified Theory of Exotic Superconductivity? [www.bnl.gov/newsroom/news.php?a=11580]

Years of experiments on various types of high-temperature superconductors materials that offer hope for energy-saving applications such as zero-loss electrical power lines have turned up an amazing array of complex behaviors among electrons that, in some instances, pair up to carry current with no resistance, and in others, stop the flow of current in its tracks. A new theory developed in part at Brookhaven may explain how these sometimes competing, "intertwined" behaviors and superconductivity itself emerge based on a single very simple principle. The theory governs all the known high-temperature superconductors and could be a big step toward identifying or developing superconductors that can be used even more effectively than those known today potentially transforming our energy landscape.

Scientists Discover Hidden Magnetic Waves in High-Temperature Superconductors [www.bnl.gov/newsroom/news.php?a=11564]

High-temperature superconductors could revolutionize the planet's aging and imperfect energy infrastructure. But to unlock the true potential of these materials, scientists must understand the strange magnetic metal from which superconductivity emerges in order to pin down the source of the current-carrying phenomenon. In one such exploration, scientists at Brookhaven Lab and other collaborating institutions have discovered a surprising twist unexpected magnetic excitations that exist in both non-superconducting and superconducting materials. The scientists say this is a major experimental clue, made possible by cutting-edge x-ray scattering techniques, about which magnetic excitations are important for high-temperature superconductivity. Exploration of this phenomenon will continue as these capabilities are incorporated into the new National Synchrotron Light Source II, now nearing completion at Brookhaven.

Field-effect Transistors Get a Boost From Ferroelectric Films [www.bnl.gov/newsroom/news.php?a=24331]

As microelectronics get smaller and smaller, one of the biggest challenges to packing a smartphone or tablet with maximum processing power and memory is the amount of heat generated by the tiny "switches" at the heart of the device. A complex metal oxide film designed by IBM and University of Texas, Austin researchers, and tested at IBM, the National Synchrotron Light Source (NSLS) at Brookhaven Lab, and Oak Ridge National Laboratory could help reduce the voltage required to switch electronic signals, and thus the excessive energy they require. "These ferroelectric films can switch, and once they're switched they are stable at room temperature; moreover you can make these things in nanoscale size on a silicon substrate, and there are a lot of ways you can incorporate them into microelectronics devices," said Jordan-Sweet, an IBM researcher at NSLS.

Transformative energy technologies

Nanocrystal Catalyst Transforms Impure Hydrogen into Electricity [www.bnl.gov/newsroom/news.php?a=11575]

Brookhaven Lab scientists have created a high-performing nanocatalyst with the perfect blend of reactivity, durability, and scalability for harnessing energy from hydrogen. The novel core-shell structure ruthenium coated with a thin layer of platinum resists damage from carbon monoxide as it drives the energetic reactions central to electric vehicle fuel cells and similar technologies. A key to the advance was close interaction between synthesis and advanced characterization using the facilities of Brookhaven's National Synchrotron Light Source and the Center for Functional Nanomaterials, which could show the crystal perfection of the core, shell and interface. The scientists' "green" synthesis method allowed them to overcome structural defects that previously crippled carbon monoxide-tolerant catalysts. "Our highly scalable synthesis method opens new and exciting possibilities for catalysis and sustainability," said Brookhaven Lab chemist Jia Wang.

Recipe for Low-Cost, Biomass-Derived Catalyst for Hydrogen Production [www.bnl.gov/newsroom/news.php?a=11531]

Another group of Brookhaven chemists has developed a way to produce hydrogen for various energy applications using a low-cost, stable, effective catalyst inspired by natureone that could sidestep the need for any expensive platinum. The catalyst, made from renewable soybeans and abundant molybdenum metal compound, produces hydrogen in an environmentally friendly, cost-effective manner. The research was conducted in part by twin-sister high school students as part of an internship at Brookhaven. Working with the Brookhaven chemists, they sought out natural materials (e.g., biomass) for preparing an electrocatalyst to produce pure hydrogen, which can be used as fuel, from water. The results have been promising. The students (now in college) and scientists are conducting additional studies to gain a deeper understanding of the nature of the catalyst and exploring ways to further improve its performance.

Nano-Cone Textures Generate Extremely "Robust" Water-Repellent Surfaces [www.bnl.gov/newsroom/news.php?a=11583]

When it comes to designing extremely water-repellent surfaces, shape and size matter. That's the finding of a group of Brookhaven Lab scientists who investigated the effects of differently shaped, nanoscale textures on a material's ability to force water droplets to roll off. The research was aimed at improving on engineers' attempts to mimic the self-cleaning tendency of plants such as lotus leaves, to produce materials that would perform well even under conditions involving high temperature, pressure, and humidity such as would be experienced on automotive and aircraft windshields and steam turbine power generators. By fabricating and testing materials with different nanoscale textures, the scientists discovered that water droplets rolled off surfaces with cone-shaped nanostructures significantly better than ones with cylindrical pillars. Further, by virtue of their reduced size, these structures were able to completely repel water droplets impacting the surface with force (as captured using a high-speed camera). The team is working to extend their method of nanotexture fabrication to other materials, including glass and plastics, as well as designing oil-repellent surfaces by further tweaking the surface texture shape.

Scientists Identify Key Genes for Increasing Oil Content in Plant Leaves [www.bnl.gov/newsroom/news.php?a=11582]

Brookhaven scientists identified the key genes required for oil production and accumulation in plant leaves and other vegetative plant tissues, as opposed to seeds, where plants normally store oils to nourish developing embryos. Enhancing expression of these genes resulted in vastly increased oil content in leaves, the most abundant sources of plant biomass a finding that could have important implications for increasing the energy content of plant-based foods and renewable biofuel feedstocks. These studies were done in laboratory plants, so the scientists still need to see if this strategy will work in bioenergy or feed crops. And there are challenges in finding ways to extract oil from leaves so it can be converted to biofuels. But the research provides a very promising path to improving the use of plants as a source of higher-energy-content feed and feedstocks for producing renewable energy.

Brookhaven's role in this research is funded primarily by the DOE Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350

or Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Videos/Movies

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Imaging

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the companyís 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

The Zeiss Global Centre in the School of Engineering at the University of Portsmouth uses Deben ĶXCT stages to characterise the structural competence of biological structures June 13th, 2017

Laboratories

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Physics

In atomic propellers, quantum phenomena can mimic everyday physics June 1st, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Superconductivity

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Chip Technology

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Materials/Metamaterials

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tools

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Energy

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Water

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Plasmonics could bring sustainable society, desalination tech June 2nd, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Automotive/Transportation

Letiís Autonomous-Vehicle System Embedded in Infineonís AURIX Platform: Letiís Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the companyís 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Fuel Cells

Electrocatalyst nanostructures key to improved fuel cells, electrolyzers June 5th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project