Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene nanoribbons an ice-melting coat for radar: Rice University discovery is cheaper, lighter and more effective than current deicers

A new compound created by Rice University and Lockheed Martin provides a thin, robust ice-melting coat for marine, airborne and other uses. The active element consists of carbon nanotubes “unzipped” into ribbons.Credit: Tour Group/Rice University
A new compound created by Rice University and Lockheed Martin provides a thin, robust ice-melting coat for marine, airborne and other uses. The active element consists of carbon nanotubes “unzipped” into ribbons.

Credit: Tour Group/Rice University

Abstract:
Ribbons of ultrathin graphene combined with polyurethane paint meant for cars is just right for deicing sensitive military radar domes, according to scientists at Rice University.

Graphene nanoribbons an ice-melting coat for radar: Rice University discovery is cheaper, lighter and more effective than current deicers

Houston, TX | Posted on December 16th, 2013

The Rice lab of chemist James Tour, in collaboration with Lockheed Martin, developed the compound to protect marine and airborne radars with a robust coating that is also transparent to radio frequencies.

The research was published this week in the American Chemical Society journal Applied Materials and Interfaces.

Bulky radar domes (known as "radomes") like those seen on military ships keep ice and freezing rain from forming directly on antennas. But the domes themselves must also be kept clear of ice that could damage them or make them unstable. This task is usually accomplished with a metal framework that supports and heats ceramic alumina (aluminum oxide), Tour said. But these materials are heavy, and metallic elements must be installed far from the source of radio signals to keep from interfering.

"It's very hard to deice these alumina domes," Tour said. "It takes a lot of power to heat them when they're coated with ice because they're very poor conductors."

Enter graphene, the single-atom-thick sheet of carbon that both conducts electricity and, because it's so thin, allows radio frequencies to pass unhindered. Spray-on deicing material that incorporates graphene nanoribbons would be lighter, cheaper and more effective than current methods, Tour said.

"This started when (Lockheed Martin engineer) Vladimir Volman saw a presentation by Yu Zhu, a postdoc in my lab at the time," he said. "Volman had calculated that one could pass a current through a graphene film less than 100 nanometers thick and get resistive heating that would be great for deicing. Zhu was presenting his technique for spraying nanoribbons films and Volman recognized the potential."

Pristine graphene transmits electricity ballistically and would not produce enough heat to melt ice or keep it from forming, but graphene nanoribbons (GNRs) unzipped from multiwalled carbon nanotubes in a chemical process invented by the Tour group in 2009 do the job nicely, he said. When evenly dispersed on a solid object, the ribbons overlap and electrons pass from one to the next with just enough resistance to produce heat as a byproduct. The effect can be tuned based on the thickness of the coating, Tour said.

In initial experiments, the team led by Volman and Zhu spray-coated a surface with soluble GNRs. "They said it works great, but it comes off on our fingers when we touch it," Tour said.

He found the solution in a Houston auto parts store. "I bought some polyurethane car paint, which is extremely robust. On a car, it lasts for years. So when we combined the paint and GNRs and coated our samples, it had all the properties we needed."

Lab samples up to two square feet were assembled using a flexible polymer substrate, polyimide, which was spray-coated with polyurethane paint and allowed to dry. The coated substrate was then put on a hotplate to soften the paint, and a thin GNR coat was airbrushed on. When dried, the embedded ribbons became impossible to remove. Tour said the researchers have also tried putting GNRs under the polyurethane paint with good results.

The 100-nanometer layer of GNRs — thousands of times thinner than a human hair — was hooked to platinum electrodes. Using voltage common to shipboard systems, the compound was sufficient to deice lab samples cooled to -4 degrees Fahrenheit within minutes. Further experiments found them to be nearly invisible to radio frequencies.

Tour said the availability of nanoribbons is no longer an issue now that they're being produced in industrial quantities.

"Now we're going to the next level," he said, noting that GNR films made into transparent films might be useful for deicing car windshields, a project the lab intends to pursue.

Volman suggested the material would make a compelling competitor to recently touted nanotube-based aerogels for deicing airplanes in the winter. "We have the technology; we have the material," he said. "It's very durable and can be sprayed on to heat any kind of surface."

Co-authors of the paper include Rice graduate students Abdul-Rahman Raji and Changsheng Xiang; Wei Lu and Carter Kittrell, research scientists at Rice's Richard E. Smalley Institute for Nanoscale Science and Technology; and Bostjan Genorio, a former postdoctoral researcher at Rice, now a visiting scientist at Argonne National Laboratory. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science.

The Lockheed Martin Corp. through the LANCER IV program, the Air Force Office of Scientific Research and the Office of Naval Research supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Tour Group:

Smalley Institute for Nanoscale Science and Technology:

Related News Press

News and information

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Videos/Movies

New remote-controlled microrobots for medical operations July 23rd, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

A 'bridge' of carbon between nerve tissues: A high-tech 'sponge' connects neurons in vitro (and is biocompatible in vivo) July 18th, 2016

Graphene/ Graphite

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

A glimpse inside the atom: Using electron microscopes, it is possible to image individual atoms July 20th, 2016

Aerogels

Aspen Aerogels to Present at the 28th Annual ROTH Conference March 14th, 2016

The secret to 3-D graphene? Just freeze it: New study shows how researchers tame the notoriously fickle supermaterial in aerogel form with 3-D printer and ice March 6th, 2016

Aspen Aerogels to Present at the Needham Growth Conference January 7th, 2016

A new form of real gold, almost as light as air November 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

Weird quantum effects stretch across hundreds of miles July 21st, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

Discoveries

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

Nanoparticle versus cancer: Scientists have created nanoparticles which cure cancer harmlessly July 22nd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Announcements

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Military

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

'Green' electronic materials produced with synthetic biology July 16th, 2016

New method can identify chemical warfare agents more easily: The method could help governments protect people from horrifying toxic effects July 15th, 2016

Aerospace/Space

Scientists move 1 step closer to creating an invisibility cloak July 15th, 2016

Bouncing droplets remove contaminants like pogo jumpers: Researchers at Duke University and the University of British Columbia are exploring whether surfaces can shed dirt without being subjected to fragile coatings July 7th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic