Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay

An optical image showing an hBNAG sample resting on the stamen of a flower.

CREDIT
X. Xu and X. Duan
An optical image showing an hBNAG sample resting on the stamen of a flower. CREDIT X. Xu and X. Duan

Abstract:
Researchers have developed a near weightless material, comprised mostly of air, capable of both withstanding and protecting against some of the most extreme temperatures experienced in aerospace and industrial environments. It performed well when heated to 900 °Celsius (C) and then rapidly cooled to -198 °C, the authors say.

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay

Washington, DC | Posted on February 17th, 2019

Their new ceramic aerogel is engineered with unusual double-negative-index properties and demonstrates exceptional structural stability and superinsulation, making it an ideal material to be used in demanding applications like the heat shields on space vehicles. Aerogels are a composite material made mostly of air encompassed within a network of a solid medium, such as ceramic, metal, or carbon. Ceramic aerogels are incredibly lightweight and possess traits highly desired for enduring demanding environments. However, most conventional ceramic aerogels are brittle and susceptible to degradation due to extended high-temperature exposure or large and rapid temperature swings. According to the authors, these issues have greatly limited the use of ceramic aerogels as a super-insulating material. Xiang Xu and colleagues report on the design of a unique ceramic aerogel created using atomically thin sheets of hexagonal boron nitride (h-BN). By carefully engineering the ceramic aerogel microstructure, Xu et al. were able to achieve both a negative Poisson's ratio (a measure of a material's tendency to bulge outward when compressed) as well as a negative thermal expansion coefficient. To assess the material's mechanical and thermal capabilities, the authors ran a series of tests, including heating the aerogel to 900 °C and then rapidly cooling it -198 °C repeatedly, and at a rate of 275 °C per second. Xu et al. also evaluated the effect of long-term temperature stress by exposing the material to temperatures approaching 1500 °C in a vacuum. According to the results, the aerogel remained largely unchanged with near-zero strength loss following the rigorous trials. Manish Chhowalla and Deep Jariwala discuss the potential of the aerogel in a related Perspective.

####

For more information, please click here

Contacts:
Science Press Package Team

202-326-6440

Copyright © American Association for the Advancement of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Aerogels

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Aspen Aerogels to Present at the 28th Annual ROTH Conference March 14th, 2016

The secret to 3-D graphene? Just freeze it: New study shows how researchers tame the notoriously fickle supermaterial in aerogel form with 3-D printer and ice March 6th, 2016

Possible Futures

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Materials/Metamaterials

ZEN gets $1m grant for graphene-enhanced concrete project May 12th, 2019

Computing faster with quasi-particles May 10th, 2019

Coal could yield treatment for traumatic injuries: Rice, Texas A&M, UTHealth scientists discover coal-derived ‘dots’ are effective antioxidant April 25th, 2019

Multistep self-assembly opens door to new reconfigurable materials April 19th, 2019

Announcements

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project