Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoscale Friction: High Energy Losses in the Vicinity of Charge Density Waves

An oscillating Atomic Force Microscope tip in proximity to the Charge Density Wave (CDW) on NbSe2 surface. The yellow and blue spheres are the Selenium and Niobium atoms forming the lattice. A single CDW phase slip process is visible onto NbSe2 surface in the vicinity of the tip.
An oscillating Atomic Force Microscope tip in proximity to the Charge Density Wave (CDW) on NbSe2 surface. The yellow and blue spheres are the Selenium and Niobium atoms forming the lattice. A single CDW phase slip process is visible onto NbSe2 surface in the vicinity of the tip.

Abstract:
In collaboration with the University of Basel, an international team of researchers has observed a strong energy loss caused by frictional effects in the vicinity of charge density waves. This may have practical significance in the control of nanoscale friction. The results have been published in the scientific journal Nature Materials.

Nanoscale Friction: High Energy Losses in the Vicinity of Charge Density Waves

Basel, Switzerland | Posted on December 15th, 2013

Friction is often seen as an adverse phenomenon that leads to wear and causes energy loss. Conversely, however, too little friction can be a disadvantage as well - for example, running on an icy surface or driving on a wet road.

An understanding of frictional effects is therefore of great importance - particularly in the field of nanotechnology, where friction has to be controlled at a nanoscale. A recent study conducted by researchers from the University of Basel, the University of Warwick, the CNR Institute SPIN in Genoa and the International Centre for Theoretical Physics (ICTP) in Trieste has helped to give a better understanding of how friction works in microscopic dimensions.

In the experiment led by Prof. Dr. Ernst Meyer, Professor of Experimental Physics at the University of Basel, the team vibrated the nanometer-sized tip of an atomic force microscope above the surface of a layered structure of niobium and selenium atoms. They selected this combination due to its unique electronic properties, and in particular the charge-density waves formed at extremely low temperatures. The electrons are no longer evenly distributed as in a metal, but instead form areas where the electron density fluctuates between a high and low range.

Energy losses in the vicinity of charge density waves

The researchers registered very high energy losses in the vicinity of these charge density waves between the surface and the tip of the atomic force microscope, even at relatively large distances of several atomic diameters. "The energy drop was so great, it was as if the tip had suddenly been caught in a viscous fluid," says Meyer.

The team observed this energy loss only at temperatures below 70° Kelvin (-203° C). Since charge density waves do not occur at higher temperatures, it interpreted this as evidence that frictional forces between the probe tip and charge density waves are the cause of the energy loss.

The theoretical model shows that the high energy loss results from a series of local phase shifts in the charge density waves. This newly discovered phenomenon may be of practical significance in the field of nanotechnology, particularly as the frictional effect can be modulated as a function of distance and voltage.


Full bibliographic information

Markus Langer, Marcin Kisiel, Rémy Pawlak, Franco Pellegrini, Giuseppe E. Santoro, Renato Buzio, Andrea Gerbi, Geetha Balakrishnan, Alexis Baratoff, Erio Tosatti and Ernst Meyer
Giant frictional dissipation peaks and charge-density-wave slips at the NbSe2 surface
Nature Materials, published online 15th December 2013 | doi: 10.1038/NMAT3836

####

About Universität Basel
Tradition - The city of Basel is home to the oldest university in Switzerland. Founded upon the initiative of local citizens in 1460, the University of Basel is a modern and attractive centre of teaching, learning, and research situated in the heart of the historic old town.

Self - managed - The University of Basel has been self-managed since 1996 whilst remaining under the jurisdiction of the Cantons of Basel-Stadt and Basel-Landschaft. It provides committed individuals from all over the world with a strong academic community and an inspiring work environment. It is home to 3’500 staff. Its annual budget is approximately 500 million Swiss francs, of which one fourth each is borne by the two sponsoring cantons. The remaining costs are covered through federal contributions, third-party funding, other cantons, and tuition fees.

Full University Status - The University of Basel has full university status. It offers degree programmes across the arts and sciences, ranging from Archaeology to Zoology. One of our distinctive strengths is the focus on «Culture» and «Life Sciences.»

Popular - Comprising 9’000 undergraduate and 2’000 postgraduate and doctoral students, the University of Basel is comparatively small by European standards. Our 320 professors and 1’300 academic staff are dedicated to advancing
knowledge and fostering independent thinking and socially responsible action. We are proud of our high female student roll (55%) – tending upwards – and an increasing number of international students (20%).

Successful - Our mission is to accomplish first-class research, teaching, and public service. We rank among the world’s one hundred best universities and boast a top-ten place among German-speaking universities.

For more information, please click here

Contacts:
Ernst Meyer
University of Basel
Department of Physics
+41 61 267 37 24

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

GLOBALFOUNDRIES and Catena Partner to Provide Next-Generation RF Connectivity Solutions for Growing Wireless Markets: Catena Wi-Fi and Bluetooth RF technologies available on GLOBALFOUNDRIES 28nm Super Low Power Process technology September 3rd, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Imaging

JEOL Introduces New Best-in-Class Field Emission SEM September 2nd, 2015

Physics

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

Seeing quantum motion August 30th, 2015

Molecular Machines

Using DNA origami to build nanodevices of the future September 1st, 2015

Injectable electronics: New system holds promise for basic neuroscience, treatment of neuro-degenerative diseases June 8th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Molecular Nanotechnology

Using DNA origami to build nanodevices of the future September 1st, 2015

Sandcastles inspire new nanoparticle binding technique August 5th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Rare form: Novel structures built from DNA emerge July 20th, 2015

Discoveries

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Announcements

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

GLOBALFOUNDRIES and Catena Partner to Provide Next-Generation RF Connectivity Solutions for Growing Wireless Markets: Catena Wi-Fi and Bluetooth RF technologies available on GLOBALFOUNDRIES 28nm Super Low Power Process technology September 3rd, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Tools

Oxford Instruments’ Triton Cryofree dilution refrigerator selected by Oxford University for developing scalable quantum nanodevices September 2nd, 2015

JEOL Introduces New Best-in-Class Field Emission SEM September 2nd, 2015

Atomic Force Microscopes from Asylum Research Guide the Development of Thin Film Deposition and Etch Processes September 2nd, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Research partnerships

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

Turning clothing into information displays September 2nd, 2015

Sustainable nanotechnology center September 1st, 2015

$200K Awarded to Develop In Vitro Lung Test for Toxicity of Inhaled Nanomaterials: In Vitro Lung Test Designed to Protect Human Health and Replace Animal Testing September 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic