Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Leti Announces Update of UTSOI Model that Allows Designers To Improve Trade-Off between Performance and Power Use

Abstract:
CEA-Leti announced today that Leti-UTSOI2, the first complete compact model that enlarges the physically described bias range for designers, is available in all major SPICE simulators.

Leti Announces Update of UTSOI Model that Allows Designers To Improve Trade-Off between Performance and Power Use

Grenoble, France | Posted on December 7th, 2013

The updated model, which can account for back interface inversion in ultra-thin body & box (UTBB) transistors, maintains a formal symmetry between front and back interface in all equations of the core model. It also includes a full description of the creation of an inversion layer at the rear face of the silicon film. This physical description is based on an original and non-simplified resolution of the equations that govern the electrostatics of the transistor.

The updated model, which will be presented during Session 12, Dec. 10, at IEDM 2013 in Washington, D.C., is the first compact model exhibiting this capability. It also can describe transistor behaviors in a large range of polarization applied both at the front and at the rear interface of the transistor.

"Enlarging the back biasing range accessible to the design community is key to optimizing the trade-off between performance and power consumption for UTBB technology," said Thierry Poiroux, research engineer at Leti and model co-developer. "This provides more opportunities to utilize FDSOI's advantages for mobile devices and other applications that require efficient energy use."

FDSOI exhibits several major advantages for advanced technology nodes. It allows an electrostatic control by the gate on the channel of the transistor that is significantly better than conventional architectures. This control improves the trade-off between performance and power consumption at the circuit level, and enables significant improvements in silicon chip miniaturization.

In addition, FDSOI is a planar technology, which makes the transition from conventional technologies easier, and allows significantly simplified manufacturability compared to FinFET technology.

The Leti-UTSOI2 compact model was developed to describe the electrical behavior of FDSOI transistors by taking into account all their specificities. The model is based on a physical description of the device and all the parameters are physically based, which also allows its use for predictive analysis of the process.

The electrostatic coupling between the front and rear interfaces of the thin silicon film is part of the model. As a result it is particularly adapted to represent the behavior of the devices in low-doped, thin-silicon technologies in insulator layers ranging in thickness from nanometers to hundreds of micrometers.

The first version of Leti-UTSOI, valid for low-to-moderate back bias (up to Vdd), has already been implemented. It is available in major SPICE simulators (Agilent, Cadence, Mentor Graphics and Synopsys) and it is also available in industrial process-design kits through the CMP. Online documentation and model cards (typical cases) are available at http://www-leti.cea.fr/en/How-to-collaborate/Collaborating-with-Leti/UTSOI. For access to the Verilog-A code, contact Leti.

The model's development was supported by STMicroelectronics and partly funded by the ENIAC JU Places2Be project.

####

About CEA-Leti
By creating innovation and transferring it to industry, Leti is the bridge between basic research and production of micro- and nanotechnologies that improve the lives of people around the world. Backed by its portfolio of 2,200 patents, Leti partners with large industrials, SMEs and startups to tailor advanced solutions that strengthen their competitive positions. It has launched more than 50 startups. Its 8,000m² of new-generation cleanroom space feature 200mm and 300mm wafer processing of micro and nano solutions for applications ranging from space to smart devices. Leti’s staff of more than 1,700 includes 200 assignees from partner companies. Leti is based in Grenoble, France, and has offices in Silicon Valley, Calif., and Tokyo.

For more information, please click here

Contacts:
CEA-Leti
+33 4 38 78 02 26


Agency
+33 6 64 52 81 10

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Software

Lifeboat Foundation launches Interactive Friendly AI April 6th, 2015

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Chip Technology

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Nanoelectronics

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project