Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Leti Announces Update of UTSOI Model that Allows Designers To Improve Trade-Off between Performance and Power Use

Abstract:
CEA-Leti announced today that Leti-UTSOI2, the first complete compact model that enlarges the physically described bias range for designers, is available in all major SPICE simulators.

Leti Announces Update of UTSOI Model that Allows Designers To Improve Trade-Off between Performance and Power Use

Grenoble, France | Posted on December 7th, 2013

The updated model, which can account for back interface inversion in ultra-thin body & box (UTBB) transistors, maintains a formal symmetry between front and back interface in all equations of the core model. It also includes a full description of the creation of an inversion layer at the rear face of the silicon film. This physical description is based on an original and non-simplified resolution of the equations that govern the electrostatics of the transistor.

The updated model, which will be presented during Session 12, Dec. 10, at IEDM 2013 in Washington, D.C., is the first compact model exhibiting this capability. It also can describe transistor behaviors in a large range of polarization applied both at the front and at the rear interface of the transistor.

"Enlarging the back biasing range accessible to the design community is key to optimizing the trade-off between performance and power consumption for UTBB technology," said Thierry Poiroux, research engineer at Leti and model co-developer. "This provides more opportunities to utilize FDSOI's advantages for mobile devices and other applications that require efficient energy use."

FDSOI exhibits several major advantages for advanced technology nodes. It allows an electrostatic control by the gate on the channel of the transistor that is significantly better than conventional architectures. This control improves the trade-off between performance and power consumption at the circuit level, and enables significant improvements in silicon chip miniaturization.

In addition, FDSOI is a planar technology, which makes the transition from conventional technologies easier, and allows significantly simplified manufacturability compared to FinFET technology.

The Leti-UTSOI2 compact model was developed to describe the electrical behavior of FDSOI transistors by taking into account all their specificities. The model is based on a physical description of the device and all the parameters are physically based, which also allows its use for predictive analysis of the process.

The electrostatic coupling between the front and rear interfaces of the thin silicon film is part of the model. As a result it is particularly adapted to represent the behavior of the devices in low-doped, thin-silicon technologies in insulator layers ranging in thickness from nanometers to hundreds of micrometers.

The first version of Leti-UTSOI, valid for low-to-moderate back bias (up to Vdd), has already been implemented. It is available in major SPICE simulators (Agilent, Cadence, Mentor Graphics and Synopsys) and it is also available in industrial process-design kits through the CMP. Online documentation and model cards (typical cases) are available at http://www-leti.cea.fr/en/How-to-collaborate/Collaborating-with-Leti/UTSOI. For access to the Verilog-A code, contact Leti.

The model's development was supported by STMicroelectronics and partly funded by the ENIAC JU Places2Be project.

####

About CEA-Leti
By creating innovation and transferring it to industry, Leti is the bridge between basic research and production of micro- and nanotechnologies that improve the lives of people around the world. Backed by its portfolio of 2,200 patents, Leti partners with large industrials, SMEs and startups to tailor advanced solutions that strengthen their competitive positions. It has launched more than 50 startups. Its 8,000m˛ of new-generation cleanroom space feature 200mm and 300mm wafer processing of micro and nano solutions for applications ranging from space to smart devices. Leti’s staff of more than 1,700 includes 200 assignees from partner companies. Leti is based in Grenoble, France, and has offices in Silicon Valley, Calif., and Tokyo.

For more information, please click here

Contacts:
CEA-Leti
+33 4 38 78 02 26


Agency
+33 6 64 52 81 10

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK announces expansion of its global sales and service activities in China and USA April 15th, 2014

Nanobiotix Appoints Thierry Otin as Head of Manufacturing and Supply April 15th, 2014

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

Software

New Integrated Raman Spectroscopy & Imaging Software from CRAIC Technologies: CRAIC Technologies introduces Lambdafire-R™ integrated Raman microspectroscopy & imaging software for Windows 8 ® March 26th, 2014

First methodology to analyse nanometer line pattern images March 18th, 2014

Agilent Technologies to Demonstrate New PXI Functional Test System at IPC APEX EXPO March 17th, 2014

Thin Film Thickness Measurements of Sub-Micron Sampling Areas from CRAIC Technologies February 28th, 2014

Chip Technology

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Clean Shot at Manufacturing Course…For Less April 9th, 2014

Nanoelectronics

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Announcements

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE