Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > All aboard the nanotrain network

Nanotrain network created by scientists at Oxford University: green dye-carrying shuttles after 'refuelling' with ATP travel towards the center of the network with their cargoes of green dye.

Credit: Adam Wollman/Oxford University
Nanotrain network created by scientists at Oxford University: green dye-carrying shuttles after 'refuelling' with ATP travel towards the center of the network with their cargoes of green dye.

Credit: Adam Wollman/Oxford University

Abstract:
Tiny self-assembling transport networks, powered by nano-scale motors and controlled by DNA, have been developed by scientists at Oxford University and Warwick University.

All aboard the nanotrain network

Oxford, UK | Posted on November 11th, 2013

The system can construct its own network of tracks spanning tens of micrometres in length, transport cargo across the network and even dismantle the tracks.

The work is published in Nature Nanotechnology and was supported by the Engineering and Physical Sciences Research Council and the Biotechnology and Biological Sciences Research Council.

Researchers were inspired by the melanophore, used by fish cells to control their colour. Tracks in the network all come from a central point, like the spokes of a bicycle wheel. Motor proteins transport pigment around the network, either concentrating it in the centre or spreading it throughout the network. Concentrating pigment in the centre makes the cells lighter, as the surrounding space is left empty and transparent.

The system developed by the Oxford University team is very similar, and is built from DNA and a motor protein called kinesin. Powered by ATP fuel, kinesins move along the micro-tracks carrying control modules made from short strands of DNA. 'Assembler' nanobots are made with two kinesin proteins, allowing them to move tracks around to assemble the network, whereas the 'shuttles' only need one kinesin protein to travel along the tracks.

'DNA is an excellent building block for constructing synthetic molecular systems, as we can program it to do whatever we need,' said Adam Wollman, who conducted the research at Oxford University's Department of Physics. 'We design the chemical structures of the DNA strands to control how they interact with each other. The shuttles can be used to either carry cargo or deliver signals to tell other shuttles what to do.

'We first use assemblers to arrange the track into 'spokes', triggered by the introduction of ATP. We then send in shuttles with fluorescent green cargo which spread out across the track, covering it evenly. When we add more ATP, the shuttles all cluster in the centre of the track where the spokes meet. Next, we send signal shuttles along the tracks to tell the cargo-carrying shuttles to release the fluorescent cargo into the environment, where it disperses. We can also send shuttles programmed with 'dismantle' signals to the central hub, telling the tracks to break up.'

This demonstration used fluorescent green dyes as cargo, but the same methods could be applied to other compounds. As well as colour changes, spoke-like track systems could be used to speed up chemical reactions by bringing the necessary compounds together at the central hub. More broadly, using DNA to control motor proteins could enable the development of more sophisticated self-assembling systems for a wide variety of applications.

####

For more information, please click here

Contacts:
University of Oxford Press Office

44-186-528-3877

Copyright © University of Oxford

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video:

Related News Press

News and information

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Videos/Movies

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

ASIC Development for MEMS Applications: A Platform Approach March 25th, 2015

First proof of isolated attosecond pulse generation at the carbon K-edge March 20th, 2015

Light as puppeteer: Controlling particles with light and microfibers March 18th, 2015

Molecular Machines

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

New remote control for molecular motors: It is now theoretically possible to remotely control the direction in which magnetic molecules spin, which opens the door to designing applications based on molecular motors March 16th, 2015

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Molecular Nanotechnology

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Nanotechnology: Better measurements of single molecule circuits February 18th, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

Tiny robotic 'hands' could improve cancer diagnostics, drug delivery February 4th, 2015

Self Assembly

Four Scientists With Major Contributions to Research at Brookhaven Lab Named American Physical Society Fellows March 17th, 2015

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Discoveries

Graphene reduces wear of alumina ceramic March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Announcements

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Nanobiotechnology

Dolomite’s microfluidics technology ideal for B cell encapsulation March 24th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

TGAC's take on the first portable DNA sequencing 'laboratory': First remote laboratory allows researchers to conduct real-time anaylsis March 19th, 2015

Super-resolution microscopes reveal the link between genome packaging and cell pluripotency: A study using super-resolution microscopy reveals that our genome is not regularly packaged and links these packaging differences to stem cell state March 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE