Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > German-Finnish research team succeeds in organizing programmed nanoparticles into highly complex nanostructures: New principle for the self-assembly of patterned nanoparticles published in NATURE may have important implications for nanotechnology and future technologies

Ill./©: Müller Research Group
The self-assembly process described in Nature commences with chain-like macromolecules, so-called triblock terpolymers composed of three linear sections connected to form a chain-like structure A-B-C or A-D-C. The block in the middle has been marked green or black, respectively. Block A (gray) has to interact with other particles; block C (rose) is a corona controlling solubility. By way of self-aggregation the macromolecules formed nanoparticles, which by way of co-aggregation formed the next higher level in the hierarchy. This way a co-assembled superstructure develops, for which Müller's research team has coined the term "caterpillar micelles."
Ill./©: Müller Research Group

The self-assembly process described in Nature commences with chain-like macromolecules, so-called triblock terpolymers composed of three linear sections connected to form a chain-like structure A-B-C or A-D-C. The block in the middle has been marked green or black, respectively. Block A (gray) has to interact with other particles; block C (rose) is a corona controlling solubility. By way of self-aggregation the macromolecules formed nanoparticles, which by way of co-aggregation formed the next higher level in the hierarchy. This way a co-assembled superstructure develops, for which Müller's research team has coined the term "caterpillar micelles."

Abstract:
Animal and plant cells are prominent examples of how nature constructs ever-larger units in a targeted, preprogrammed manner using molecules as building blocks. In nanotechnology, scientists mimic this ‘bottom-up' technique by using the ability of suitably structured nano materials to ‘self-assemble' into higher order architectures. Applying this concept, polymer scientists from Bayreuth, Aachen, Jena, Mainz, and Helsinki have recently published an article in the prestigious journal Nature that describes a new principle for the self-assembly of patterned nanoparticles. This principle may have important implications for the fundamental understanding of such processes as well as future technologies.

German-Finnish research team succeeds in organizing programmed nanoparticles into highly complex nanostructures: New principle for the self-assembly of patterned nanoparticles published in NATURE may have important implications for nanotechnology and future technologies

Mainz, Germany | Posted on November 7th, 2013

The research team is headed by Professor Axel Müller, who was holder of the Chair of Macromolecular Chemistry II at the University of Bayreuth until his retirement in 2012; he is now a Fellow of the Gutenberg Research College at Mainz University. The other members of the team are Dr. André Gröschel (previously at the University of Bayreuth, now Aalto University Helsinki), Tina Löbling and Dr. Holger Schmalz (University of Bayreuth), Dr. Andreas Walther (Interactive Materials Research Center at Aachen University), and Junior Professor Dr. Felix Schacher (Friedrich Schiller University Jena). The research was conducted at the University of Bayreuth and funded by the German Research Foundation (DFG) within the Collaborative Research Center 840 "From Particulate Nano-Systems to Mesotechnology."

The self-assembly process described in Nature commences with chain-like macromolecules with a size in the range of 10 to 20 nanometers. In chemistry, such macromolecules are called triblock terpolymers. They are composed of three linear sections (blocks) connected to each other in sequence. They are generated using a special synthetic process, i.e., the so-called "living polymerization," and are readily available to researchers. The research team was able to guide the triblock macromolecules into soft nanoparticles with a diameter of roughly 50 nanometers. The choice of solvents played a key role in this macromolecular self-assembly process. The solvents were precisely selected and used so that the varying solubility of the three blocks and the incompatibility of the polymers with one another contributed significantly to the quality of the desired interior structure of the nanoparticles.

The scientists applied this technique to two types of triblock terpolymers. These differed with regard to the chemical properties of the middle blocks. The block sequences of the macromolecules were A-B-C and A-D-C, respectively. The first results in nanoparticles with a single bonding site and tends to form spherical clusters, while the latter creates nanoparticles with two bonding sites and thus tends to form linear superstructures. Importantly, in both cases the structure of the nanoparticles is preprogrammed by the chemical structure of the source macromolecule in the same way as the structure of a protein is determined by its amino acid sequence.

However, the process of self-assembly does not end with the nanoparticles. If the nanoparticles formed by each type of macromolecule were left to their own, spherical superstructures would result on the one hand and linear superstructures on the other. Müller's team has developed and implemented a different approach. The nanoparticles with one and two bonding sites are mixed so that they aggregate together into a completely new superstructure in a process of co-assembly. In the final superstructure, the nanoparticles originating from the A-B-C molecules and nanoparticles formed by the A-D-C molecules alternate in a precisely defined pattern.

When viewed under a transmission electron microscope, the new superstructure bears a strong resemblance to a caterpillar larva, because it also consists of a series of clearly separate, regularly ordered sections. Müller's research team has thus coined the term "caterpillar micelles" for such co-assembled superstructures.

The research findings recently published in Nature represent a breakthrough in the field of hierarchical structuring and nano-engineering as it allows creating new materials by self-assemble preprogrammed particles. This could be a game changer, because so far only top-down procedures, i.e., extracting a microstructure from a larger complex, are widely accepted structuring processes. "The limitations of this technique will become all too apparent in the near future," explained Müller. "Only rarely is it possible to generate complex structures in the nanometer range."

However, a bottom-up principle of self-assembly based on that employed in nature could well represent the best way forward. One factor that makes this particularly attractive is the large number of macromolecules, which are readily available as building blocks. They can be used to incorporate specific properties in the resultant superstructures, such as sensitivity to environmental stimuli (e.g. temperature, light, electric and magnetic fields, etc.) or give them the ability to be switched on and off at will. Possible applications include nanolithography and the delivery of drugs in which the time and site of release of active substances can be preprogrammed. Here, the similarity to the structural principles of animal and plant cells becomes apparent again, where various properties are compartmentalized into areas of limited space.

The macromolecules carrying diverse functional segments can be hundreds of times smaller than a micrometer. The superstructures that such macromolecules produce have correspondingly high resolution. "Future technologies - such as tailor-made artificial cells, transistors, or components for micro/nano-robotics - may benefit significantly from this particularly delicate structuring," explained Müller. "The research findings we published in Nature do not yet have any immediate real-world applications. Nevertheless, the better we understand bottom-up processes starting with molecules in the nanometer range and moving on to the higher hierarchical levels in the micrometer range, the more likely future technologies will be within our grasp." The caterpillar micelles are in no way the only superstructures that can be produced with the self-assembling nanoparticles. "Such soft nanoparticles can be combined with inorganic or biological nano- and microparticles to create previously unknown materials with specific functions. The number of possible combinations is practically endless," concluded Müller.

####

For more information, please click here

Contacts:
Dr. Axel H. E. Müller

49-613-139-22372

Copyright © Johannes Gutenberg Universitaet Mainz

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Publication

Related News Press

News and information

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

Synthetic Biology

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Measuring forces in the DNA molecule: First direct measurements of base-pair bonding strength September 13th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

'Green' electronic materials produced with synthetic biology July 16th, 2016

Possible Futures

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Molecular Machines

Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot November 25th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

HKU chemists develop world's first light-seeking synthetic Nanorobot November 9th, 2016

Light drives single-molecule nanoroadsters: Rice University scientists part of international team demonstrating untethered 3-wheelers November 4th, 2016

Molecular Nanotechnology

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

New Book by Nobel Laureate Tells Story of Chemistry’s New Field: Fraser Stoddart explains the mechanical bond and where it is taking scientists November 11th, 2016

HKU chemists develop world's first light-seeking synthetic Nanorobot November 9th, 2016

Self Assembly

Computers made of genetic material? HZDR researchers conduct electricity using DNA-based nanowires November 9th, 2016

First multicellular organism inspires the design of better cancer drugs September 15th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology September 8th, 2016

Discoveries

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Materials/Metamaterials

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Inside tiny tubes, water turns solid when it should be boiling: MIT researchers discover astonishing behavior of water confined in carbon nanotubes November 30th, 2016

Announcements

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

Nanobiotechnology

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

Research partnerships

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project