Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A swarm on every desktop: Robotics experts learn from public: Swarm robotics researchers at Rice University gather data with online game

Postdoctoral researcher Aaron Becker designed a new control algorithm that allows swarms of r-one robots from Rice's Multi-Robot Systems Laboratory to complete complex tasks -- including spelling out Rice's trademark R.

CREDIT: Jeff Fitlow/Rice University
Postdoctoral researcher Aaron Becker designed a new control algorithm that allows swarms of r-one robots from Rice's Multi-Robot Systems Laboratory to complete complex tasks -- including spelling out Rice's trademark R.

CREDIT: Jeff Fitlow/Rice University

Abstract:
The next experiment from Rice University's Multi-Robot Systems Laboratory (MRSL) could happen on your desktop. The lab's researchers are refining their control algorithms for robotic swarms based upon data from five free online games that anyone can play.

A swarm on every desktop: Robotics experts learn from public: Swarm robotics researchers at Rice University gather data with online game

Houston, TX | Posted on September 9th, 2013

"What we learn from the game and our lab experiments applies directly to real-world challenges," said Aaron Becker, a postdoctoral researcher at MRSL. "For example, if a doctor had a swarm of several thousand microscopic robots, each carrying a tiny payload of anti-cancer drugs, might it be possible to have them all converge on a tumor using magnetic signals from an MRI machine?"

In the games, players use simple commands to move groups of robots through mazes and around obstacles. Sometimes the goal is to push a larger object to a particular spot. Other times the goal is to move the collective to a target or to have it assume a specific shape. Each time a game is played, the website collects information about how the task was completed. Becker said the data will be used to develop new control algorithms for robot swarms.

"The data from these games will help us better understand how to use multi-robot systems with massive populations to perform coordinated, complex tasks," said lab director James McLurkin, assistant professor of computer science at Rice.

To demonstrate the kind of complex behaviors that can be achieved with simple commands, Becker videotaped an experiment over the Labor Day weekend in which a swarm of a dozen randomly scattered r-one robots were directed to form a complex shape -- a capital R. To direct the robots, Becker used a basic controller -- a simple one-button, '80s-era videogame joystick that was capable of giving only two commands: rotate and roll forward.

"The robots are all connected to the same joystick, so each robot received exactly the same commands," Becker said.

The experiments were the latest to use the r-one, an inexpensive yet sophisticated multi-robot system that McLurkin began designing in 2009. Each bagel-sized r-one has a radio, a motor, two wheels, dozens of sensors and onboard electronics. R-ones are up to 10 times less expensive than previously available research-grade swarm robots.

In the Labor Day experiment, Becker's control algorithm directed each r-one in the swarm to a unique, pre-programmed, end position. The algorithm did this by taking advantage of slight differences in each robot's response to the two simple commands. In a computer simulation, Becker also showed how the same technique could be used to direct a 120-robot swarm to both spell out "Rice" and display the shape of the university's owl mascot.

"The controller commands all the robots to rotate, and prior to giving the forward command, the controller measures the location and orientation of each member of the swarm with an overhead camera," Becker said. "The algorithm collapses all of that information into a single number -- a measurement of error -- and tries to make this error as small as possible."

To reduce the error measure, the controller exploits "rotational noise."

"Each time the joystick tells the robots to turn, every robot turns a slightly different amount due to random wheel slip," Becker said. "The controller uses these differences to slowly drive the swarm to its goal. This is where the algorithmic results are critical. It might take thousands of individual commands to produce a complex shape, but the proof shows that the algorithm will always produce the desired goal positions."

"It's counterintuitive," McLurkin said. "Common sense would seem to indicate that you'd need to issue individual commands to each robot to move the group into complex patterns, but that is not the case. The beauty of the algorithm is that each simple move brings the entire group closer to the goal."

He said the demonstration is the first step toward a more ambitious goal.

"Aaron's new work is aimed at using environmental obstacles to perform more complex tasks and to simultaneously control hundreds or thousands of robots," McLurkin said. "That may sound like science fiction, but Rice chemist James Tour is developing massive populations of nanorobots right now, just two buildings over. His group can build many trillions of these in a single batch."

Becker said the current algorithm is slow, and data from the online games will be used to design new control algorithms that are as much as 200 times faster.

Becker, who will wrap up a yearlong postdoctoral stint at MRSL later this month, will continue his research at his next postdoctoral assignment at Harvard University and Boston Children's Hospital.

MRSL research is supported by the National Science Foundation.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRiceU.

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

SwarmControl game:

Multi-Robot Systems Lab:

Related News Press

News and information

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

Videos/Movies

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Molecular Machines

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Molecular Nanotechnology

Nanoscale assembly line August 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Nanomedicine

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Discoveries

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

Announcements

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE