Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > EU and Russian scientists join efforts in development new nanomaterials for medical implants

Schema of crystal plasticity model of nanotitaniumIMDEA Spain
Schema of crystal plasticity model of nanotitanium

IMDEA Spain

Abstract:
With the ageing of European population, more and more people find themselves in need of dental or bone implants, which should help them to continue normal life even after mechanical damage or medical operations.

EU and Russian scientists join efforts in development new nanomaterials for medical implants

Copenhagen, Denmark | Posted on August 27th, 2013

The implants should remain functional over dozens of years without any deformation, and also without producing any toxic substances in the body. Titanium is a rather strong material, with high biocompatibility, and is therefore one of the most promising materials for medical implants in trauma surgery, orthopedic and oral medicine.

However, dental and bone implant are subject to the very high loads. That is why even higher strength and damage resistances that those of common titanium are required to ensure the necessary service properties.

The very promising way to improve the implant materials and to ensure the required properties lies in nanotechnology. Applying the severe plastic deformation to metals, one can obtain new materials with very small grains (so-called ultrafine grained metals), which have also superior properties. These nanostructured materials are stronger and also more durable than common metals, and thus, they can serve best as materials for implant applications.

In order to develop nanostructured materials for medical implants, which correspond exactly to the service requirements, scientists and developers widely use computational models.
To develop the models and software for computational development of materials for implants, several group of European and Russian scientists joined their efforts in two coordinated projects, funded by European Commission (Framework 7 Program) and Russian Ministry of Education and Science. The research project "Virtual Nanotitanium", coordinated by the Technical University of Denmark, has been started in 2011. Research groups from Denmark, Belgium, Germany, Spain, Czech Republic and Israel as well as 6 groups from Russia participate in the project, covering different aspects of the development and computational modeling of nanomaterials.

During the project, several new technologies, computational models and implant prototypes have been developed.

A software complex for multiscale virtual testing of nanotitanium for the strength, usability in biomaterials and lack of toxic materials has been developed. This software can be then used by companies developing the new implants and materials, to optimize the materials and technologies.

A novel processing route for fabrication of nano-titanium, based on high temperature ECAP-C (equal-channel angular pressing) processing and drawing, was developed by Russian partner, Ufa State Aviation Technical University.

A further practical result is the development, fabrication and testing of new nanotitanium based implants with lower diameter, which can withstand loads similar to those carried by implants of conventional design with a 50% larger diameter made from coarse-grained Ti. The implant is made from pure Ti, and doesn't contain any toxic alloying elements or allergens. The prototype was developed by the Czech project partner, small company Timplant.

In the framework of the project, a special issue of the international journal "Computational Materials Science" was published, and an International Conference on Computational Modelling of Nanostructured Materials is organized in Frankfurt am Main, Germany.

Dr. Leon Mishnaevsky Jr, Senior Researcher at Technical University of Denmark and Coordinator of the EU project,. noted that the application of developed computational models would allow efficient, reliable and quick development of nanomaterials for medical implants, thus, minimizing the necessity in animal tests. Further, the developed tools and technologies will open new possibilities in trauma surgery, orthopedic and oral medicine, allowing to heal bone illnesses, dental problems, and traumas at a new level.

The coordinator of the Russian project, Professor Evgeny Levashov (National University of Science and Technology "MISIS", Moscow) underlined that this work is a very positive example of collaboration between European and Russian research teams, leading to the excellent new results.
The Technical Advisor of the project, Professor Eberhard Seitz (Clausthal University of Technology, Germany) noticed that the main results of this project, the software for the optimization of nanomaterials for implants and the small radius implant, will surely attract interest of industries.

The project participants agreed to sign the memorandum of understanding lying ground for future collaboration and project continuation. In the Memorandum, the partners "agree agree to continue scientific, technical and practical collaboration in the area of the project" and related areas, among them, other nanostructured materials, their computational modeling and virtual testing of nanostructured materials.

####

For more information, please click here

Contacts:
Dr. habil. Leon Mishnaevsky Jr.
Senior Scientist
Coordinator of EU FP7 project "Virtual Nanotitanium"
Technical University of Denmark
Department of Wind Energy
RisÝ Campus, Frederiksborgvej 399
DK-4000 Roskilde, Denmark

Copyright © Technical University of Denmark

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Project webpage at DTU:

Project webpage at European Commission:

International Conference on Computational Modelling of Nanomaterials, Frankfurt, 3.-6.9.2013:

Related News Press

News and information

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Discoveries

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Materials/Metamaterials

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Announcements

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Alliances/Trade associations/Partnerships/Distributorships

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

Quorum announces new customer support and demonstration facilities for users worldwide October 10th, 2017

GLOBALFOUNDRIES and Soitec Enter Into Long-term Supply Agreement on FD-SOI Wafers: Strategic milestone to help guarantee a secure, high-volume supply of FD-SOI technology September 20th, 2017

Research partnerships

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Dental

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

New technology can detect tiny ovarian tumors: 'Synthetic biomarkers' could be used to diagnose ovarian cancer months earlier than now possible April 10th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Nanocellulose in medicine and green manufacturing: American University professor develops method to improve performance of cellulose nanocrystals November 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project